In order to explore the biological potential, some synthesized triazolylnucleosides were evaluated for their antibacterial, tyrosinase and DNA photocleavage activities. Triazolylnucleosides (5-12) were screened against Staphylococcus aureus (ATCC 6538), gram-positive and Escherichia coli (ATCC 10536), gram-negative bacterial strains. Among the series, compound 9 exhibited a significant level of antibacterial activity against both strains at higher concentration in reference to the standard drug, Levofloxacin. Tyrosinase activity and inhibition of these compounds were also studied, and it has been found that compounds 8 and 11 displayed more than 50% inhibitory activity. In addition, six compounds (7-12) were evaluated for their DNA photocleavage activity. The compounds 8 and 12 exhibited excellent DNA photocleavage activity at a concentration of 10 μg and may be used as template for antitumor drugs in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15257770.2017.1342830DOI Listing

Publication Analysis

Top Keywords

dna photocleavage
16
antibacterial tyrosinase
8
tyrosinase dna
8
photocleavage activity
8
activity
5
dna
4
photocleavage
4
photocleavage studies
4
studies triazolylnucleosides
4
triazolylnucleosides order
4

Similar Publications

Magnetic relaxation switch biosensor for detection of Vibrio parahaemolyticus based on photocleavable hydrogel.

Anal Chim Acta

January 2025

State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China. Electronic address:

Background: Foodborne pathogens, particularly Vibrio parahaemolyticus (VP) found in seafood, pose significant health risks, including abdominal pain, nausea, and even death. Rapid, accurate, and sensitive detection of these pathogens is crucial for food safety and public health. However, existing detection methods often require complex sample pretreatment, which limits their practical application.

View Article and Find Full Text PDF

A method to photomodulate dynamically transient DNA-based reaction circuits and networks is introduced. The method relies on the integration of photoresponsive o-nitrobenzyl-phosphate ester-caged DNA hairpin with a "mute" reaction module. Photodeprotection (λ=365 nm) of the hairpin structure separates a fuel strand triggering the dynamic, transient, operation of the DNA circuit/network.

View Article and Find Full Text PDF

The design of controllable and precise RNA-targeted CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) systems is an important problem of modern molecular biology and genetic technology. Herein, we have designed a series of photocleavable guide CRISPR RNAs (crRNA) and their 2'-modified (2'-fluoro and locked nucleic acid) analogs containing one or two 1-(2-nitrophenyl)-1,2-ethanediol photolabile linkers (PL). We have demonstrated that these crRNAs can be destroyed by relatively mild UVA irradiation with the rate constants 0.

View Article and Find Full Text PDF

In this work, we report on the synthesis and properties of a new sensitizer for photodynamic therapy applications, constituted by a ruthenium(ii) complex (1) featuring a ligand inspired from natural isoquinoline alkaloids. The spectroscopic analysis revealed that 1 is characterized by an intense red emission ( = 620 nm, = 0.17) when excited at 550 nm, a low energy radiation warranting for a safe therapeutic approach.

View Article and Find Full Text PDF

Oriented triplex DNA as a synthetic receptor for transmembrane signal transduction.

Nat Commun

November 2024

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China.

Signal transduction across biological membranes enables cells to detect and respond to diverse chemical or physical signals, and replicating these complex biological processes through synthetic methods is of significant interest in synthetic biology. Here we present an artificial signal transduction system using oriented cholesterol-tagged triplex DNA (TD) as synthetic receptors to transmit and amplify signals across lipid bilayer membranes through H-mediated TD conformational transitions from duplex to triplex. An auxiliary sequence, complementary to the third strand of the TD, ensures a controlled and preferred outward orientation of cholesterol-tagged TD on membranes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!