The design of new generation light-harvesting systems based on conjugated polymer nanoparticles (PNPs) is an emerging field of research to convert solar energy into renewable energy. In this Perspective, we focus on the understanding of the light harvesting processes like exciton dynamics, energy transfer, antenna effect, charge carrier dynamics, and other related processes of conjugated polymer-based functional nanomaterials. Spectroscopic investigations unveil the rotational dynamics of the dye molecules inside of PNPs and exciton dynamics of the self-assembled structures. A detailed understanding of the cascade energy transfer for white light and singlet oxygen generation in multiple fluorophores containing a PNP system by time-resolved spectroscopy is highlighted. Finally, ultrafast spectroscopic investigations provide direct insight into the impacts of electron and hole transfer at the interface in the hybrid materials for photocatalysis and photocurrent generation to construct efficient light-harvesting systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.7b01936 | DOI Listing |
ACS Macro Lett
December 2024
School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China.
The construction of single-component, white-light-emitting, conjugated polymers always utilizes fluorescence resonance energy transfer (FRET) for efficient emission. However, the main challenges in developing such materials primarily come from the effects of aggregation states during solution processing and the precise structural control required for the synthesis of compounds. Both aspects can affect the FRET between different lumophores in white-light-emitting materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Mechanical Engineering, Myongji University, 116 Myongji-ro, Cheoin-gu, Yongin, Gyeonggi-do 17058, Republic of Korea.
This study introduces a flexible and scalable charge-trapping intermediate layer of conjugated polymeric film comprising [PANI/PEDOT:PSS] between the [PVA/PDDA] triboelectric layer and graphene-based [PVA/GNP-PSS] electrode using the layer-by-layer (LbL) assembly method. By varying the deposition layers, the optimal coating layout was identified as 2 and 8 bilayers of intermediate and triboelectric layers, respectively. The triboelectric nanogenerator (TENG) fabricated with this optimal configuration achieved peak output voltage and current of 180 V and 9 μA, respectively, at 3 Hz and 5 N against PDMS.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden.
The 3D micro- and nanostructure of wood has extensively been employed as a template for cost-effective and renewable electronic technologies. However, other electroactive components, in particular native lignin, have been overlooked due to the absence of an approach that allows access of the lignin through the cell wall. In this study, we introduce an approach that focuses on establishing conjugated-polymer-based electrical connections at various length scales within the wood structure, aiming to leverage the charge storage capacity of native lignin in wood-based energy storage electrodes.
View Article and Find Full Text PDFAdv Mater
December 2024
School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
This paper presents a study on a novel porous polymer based on triphenylamine (LPCMP) as an excellent cathode material for lithium-ion batteries. Through structural design and a scalable post-synthesis approach, improvements in intrinsic conductivity, practical capacity, and redox potential in an organic cathode material is reported. The designed cathode achieves a notable capacity of 146 mAh g⁻¹ with an average potential of 3.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
N-nitrosodimethylamine (NDMA) was determined using a molecularly imprinted polymer (MIP)-based electrochemical sensor. Green-synthesized silver nanoparticles were functionalized with cysteamine to enhance their integration into the electrode surface, which was used to modify a glassy carbon electrode (GCE). Furthermore, a MIP-based electrochemical sensor was constructed via electropolymerization of 3-aminophenyl boronic acid (3-APBA) as a conjugated functional monomer in the presence of lithium perchlorate (LiClO) solution as a dopant, chitosan as a carrier natural polymer, and NDMA as a template/target molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!