An intestine-liver-glioblastoma biomimetic system was developed to evaluate the drug combination therapy for glioblastoma. A hollow fiber (HF) was embedded into the upper layer of the microfluidic chip for culturing Caco-2 cells to mimic drug delivery as an artificial intestine. HepG2 cells cultured in the bottom chamber of the chip acted as an artificial liver for metabolizing the drugs. The dual-drug combination to glioblastoma U251 cells was evaluated based on the intestine-liver metabolic model. The drugs, irinotecan (CPT-11), temozolomide (TMZ) and cyclophosphamide (CP), were used to dynamically stimulate the cells by continuous infusion into the intestine unit. After intestine absorption and liver metabolism, the prodrugs were transformed to active metabolites, which induced glioblastoma cells apoptosis. The anticancer activity of the CPT-11 and TMZ combination is significantly enhanced compared to that of the single drug treatments. Combination index (CI) values of the combination groups, CPT-11 and TMZ, CPT-11 and CP, and TMZ and CP, at half maximal inhibitory concentration were 0.137, 0.288, and 0.482, respectively. The results indicated that the CPT-11 and TMZ combination was superior to the CPT-11 and CP group as well as the TMZ and CP group towards the U251 cells. The metabolism mechanism of CPT-11 and TMZ was further studied by coupling with mass spectrometric analysis. The biomimetic model enables the performance of long-term cell co-culture, drug delivery, metabolism and real-time analysis of drug effects, promising systematic in vitro mimicking of physiological and pharmacological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c7an00453b | DOI Listing |
Biomed Pharmacother
December 2024
Department of Toxicology, University Medical Center of the Johannes Gutenberg University, Obere Zahlbacher Str. 67, Mainz D-55131, Germany. Electronic address:
Background And Purpose: Standard of care for glioblastomas includes radio-chemotherapy with the monoalkylating compound temozolomide. Temozolomide induces primarily senescence, inefficiently killing glioblastoma cells. Recurrences are inevitable.
View Article and Find Full Text PDFEur J Cancer
September 2024
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
Purpose: The objective of this study was to determine the recommended Phase 2 dose (RP2D) of pevonedistat, a first in class inhibitor of NEDD8 activating enzyme, in combination with irinotecan (IRN) and temozolomide (TMZ) in children with cancer.
Methods: This Phase 1 study used a rolling 6 design to evaluate escalating doses of pevonedistat in combination with standard doses of IRN and TMZ in pediatric patients with recurrent/refractory solid or CNS tumors. During cycle 1, pevonedistat was administered intravenously on days 1, 8, 10, and 12, with IRN (IV, 50 mg/m) and TMZ (orally, 100 mg/m), on days 8-12 of a 28-day cycle.
Int J Mol Sci
May 2024
Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA.
IMP dehydrogenase (IMPDH) inhibition has emerged as a new target therapy for glioblastoma multiforme (GBM), which remains one of the most refractory tumors to date. TCGA analyses revealed distinct expression profiles of IMPDH isoenzymes in various subtypes of GBM and low-grade glioma (LGG). To dissect the mechanism(s) underlying the anti-tumor effect of IMPDH inhibition in adult GBM, we investigated how mycophenolic acid (MPA, an IMPDH inhibitor) treatment affected key oncogenic drivers in glioblastoma cells.
View Article and Find Full Text PDFJ Neurosurg Pediatr
March 2023
Departments of1Neurosurgery and.
Objective: This study aimed to evaluate the efficacy and safety of combination therapy with bevacizumab (Bev), irinotecan (CPT-11), and temozolomide (TMZ) in children with central nervous system (CNS) embryonal tumor relapse.
Methods: The authors retrospectively examined 13 consecutive pediatric patients with relapsed or refractory CNS embryonal tumors who received combination therapy comprising Bev, CPT-11, and TMZ. Specifically, 9 patients had medulloblastoma, 3 had atypical teratoid/rhabdoid tumor (AT/RT), and 1 had CNS embryonal tumor with rhabdoid features.
J Neurooncol
October 2022
The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston (UTHealth®) McGovern Medical School and Memorial Hermann Hospital at Texas Medical Center, 6400 Fannin Street, Suite 2800, Houston, TX, 77030, USA.
Purpose: Systemic chemotherapy including monotherapy with temozolomide (TMZ) or bevacizumab (BEV); two-drug combinations, such as irinotecan (IRI) and BEV, TMZ and BEV and a three-drug combination with TMZ, IRI and BEV (TIB) have been used in treating patients with progressive high-grade gliomas including glioblastoma (GBM). Most patients tolerated these regimens well with known side effects of hypertension, proteinuria, and reversible clinical myelosuppression (CM). However, organ- or system- specific toxicities from chemotherapy agents have never been examined by postmortem study.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!