Lysine-Targeting Covalent Inhibitors.

Angew Chem Int Ed Engl

Cancer Research, UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, SW7 3RP, UK.

Published: November 2017

Targeted covalent inhibitors have gained widespread attention in drug discovery as a validated method to circumvent acquired resistance in oncology. This strategy exploits small-molecule/protein crystal structures to design tightly binding ligands with appropriately positioned electrophilic warheads. Whilst most focus has been on targeting binding-site cysteine residues, targeting nucleophilic lysine residues can also represent a viable approach to irreversible inhibition. However, owing to the basicity of the ϵ-amino group in lysine, this strategy generates a number of specific challenges. Herein, we review the key principles for inhibitor design, give historical examples, and present recent developments that demonstrate the potential of lysine targeting for future drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201707630DOI Listing

Publication Analysis

Top Keywords

covalent inhibitors
8
drug discovery
8
lysine-targeting covalent
4
inhibitors targeted
4
targeted covalent
4
inhibitors gained
4
gained widespread
4
widespread attention
4
attention drug
4
discovery validated
4

Similar Publications

The structural organisation of pentraxin-3 and its interactions with heavy chains of inter-α-inhibitor regulate crosslinking of the hyaluronan matrix.

Matrix Biol

January 2025

Manchester Cell-Matrix Centre, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK; Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9PL, United Kingdom. Electronic address:

Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Eupalinolide B inhibits periodontitis development by targeting ubiquitin conjugating enzyme UBE2D3.

MedComm (2020)

January 2025

Department of Urology, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Centre for Geriatrics Shenzhen People's Hospital, The First Affiliated Hospital, Southern University of Science and Technology Shenzhen China.

Periodontitis is a chronic periodontal inflammatory disease caused by periodontal pathogens commonly seen in adults. Eupalinolide B (EB) is a sesquiterpenoid natural product extracted from Eupatorium lindleyanum and has been reported as a potential drug for cancers and immune disorders. Here, we explored the ameliorative effects and underlying molecular mechanism of EB on periodontitis for the first time.

View Article and Find Full Text PDF

Discovery of Novel Pyrimidine Derivatives as Human Pin1 Covalent Inhibitors.

ACS Med Chem Lett

January 2025

Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Pin1 (peptidyl-prolyl cis-trans isomerase NIMA-interacting 1) is a unique peptidyl-prolyl isomerase (PPIase), and inactivation of Pin1 with a covalent inhibitor is a potential strategy for developing anticancer agents. Herein, a series of sulfolane amino-substituted 2-chloro-5-nitropyrimidine derivatives were disclosed as structurally distinct covalent inhibitors toward Pin1, which were validated for their covalent binding to Cys113 of Pin1 by X-ray cocrystal structures of compounds (IC = 11.55 μM) and (IC = 3.

View Article and Find Full Text PDF

Discovery of a Potent Triazole-Based Reversible Targeted Covalent Inhibitor of Cruzipain.

ACS Med Chem Lett

January 2025

Sustainable Chemistry for Metals and Molecules, Department of Chemistry, KU Leuven, Leuven 3000, Belgium.

Cruzipain (CZP) is an essential cysteine protease of , the etiological agent of Chagas disease, and a promising druggable target. To date, no CZP inhibitors have reached clinical use, with research efforts mostly hampered by insufficient potency, limited target selectivity or lack of bioactivity translation from the isolated enzyme to the parasite in cellular environments. In this study, we report the design of , a 1,2,3-triazole-based targeted covalent inhibitor with nanomolar potency (IC = 28 nM) and null inhibition of human cathepsin L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!