Stromal liver cells obtained from liver biopsy specimens of a patient with alcoholic cirrhosis can proliferate for a long time in culture passing more than 30 passages. In the course of culturing from early to late passages, acceleration of cell proliferation, decrease of the expression of some markers, and loss of hepatogenic differentiation potential were observed. On passage 30, induced pluripotent stem cells were obtained from these cells and comparative analysis of adipogenic and hepatic differentiation potencies of these cells and original liver stromal cells was performed. Induced pluripotent stem cells differentiated into both directions more efficiently and more rapidly than initial cells. Under conditions of hepatic differentiation, liver stromal cells started to express markers of definitive endoderm, but not markers of immature/mature hepatocytes, whereas induced pluripotent stem cells consistently expressed markers of definitive endoderm, immature/mature hepatocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-017-3845-4DOI Listing

Publication Analysis

Top Keywords

induced pluripotent
16
pluripotent stem
12
stem cells
12
cells
11
stromal liver
8
liver cells
8
alcoholic cirrhosis
8
hepatic differentiation
8
liver stromal
8
stromal cells
8

Similar Publications

Gaucher's disease (GD) is a rare autosomal recessive genetic disorder caused by mutations in the gene. Mutations in the gene lead to the deficiency of glucocerebrosidase, an enzyme that helps in the breakdown of glucosylceramide (GlcCer) into ceramide and glucose. The lack of the enzyme causes GlcCer accumulation in macrophages, resulting in various phenotypic characteristics of GD.

View Article and Find Full Text PDF

The advent of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-based genome editing has marked a significant advancement in genetic engineering technology. However, the editing of induced pluripotent stem cells (iPSCs) with CRISPR presents notable challenges in ensuring cell survival and achieving high editing efficiency. These challenges become even more complex when considering the specific target site.

View Article and Find Full Text PDF

Dual role of extracellular vesicles in neurodegenerative diseases.

World J Stem Cells

December 2024

Experimental Neurology Unit and Milan Center for Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza 20900, Italy.

Extracellular vesicles (EVs) are cell-to-cell interaction tools that are attracting increasing interest in the literature in two opposing areas. In addition to their role in physiological development, there is growing evidence of their involvement in healing and protective processes. However, EVs also mediate pathological conditions, particularly contributing to the progression of several chronic diseases, such as neurodegenerative diseases.

View Article and Find Full Text PDF

Nerve growth factor (NGF) is a neurotrophic factor usually involved in the survival, differentiation, and growth of sensory neurons and nociceptive function. Yet, it has been suggested to play a role in the pathogenesis of osteoarthritis (OA). Previous studies suggested a possible relationship between NGF and OA; however, the underlying mechanisms remain unknown.

View Article and Find Full Text PDF

KLF2-dependent transcriptional regulation safeguards the heart against pathological hypertrophy.

J Mol Cell Cardiol

December 2024

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen 518057, China; State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; Key Laboratory of Application of Pluripotent Stem Cells in Heart Regeneration, Chinese Academy of Medical Sciences, Beijing 100037, China. Electronic address:

Background: Our previous single-cell RNA sequencing study in the adult human heart revealed that cardiomyocytes from both the atrium and ventricle display high activities of Krüppel-like factor 2 (KLF2) regulons. However, the role of the transcription factor KLF2 in cardiomyocyte biology remains largely unexplored.

Methods And Results: We employed transverse aortic constriction surgery in male C57BL/6 J mice to develop an in vivo model of cardiac hypertrophy, and generated different in vitro cardiac hypertrophy models in neonatal rat ventricular myocytes and human embryonic stem cell-derived cardiomyocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!