Spectroscopic imaging of biomaterials and biological systems has received increased interest within the last decade because of its potential to aid in the detection of disease using biomaterials/biopsy samples and to probe the states of live cells in a label-free manner. The factors behind this increased attention include the availability of improved infrared microscopes and systems that do not require the use of a synchrotron as a light source, as well as the decreasing costs of these systems. This article highlights the current technical challenges and future directions of mid-infrared spectroscopic imaging within this field. Specifically, these are improvements in spatial resolution and spectral quality through the use of novel added lenses and computational algorithms, as well as quantum cascade laser imaging systems, which offer advantages over traditional Fourier transform infrared systems with respect to the speed of acquisition and field of view. Overcoming these challenges will push forward spectroscopic imaging as a viable tool for disease diagnostics and medical research. Graphical abstract Absorbance images of a biopsy obtained using an FTIR imaging microscope with and without an added lens, and also using a QCL microscope with high-NA objective.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5602084 | PMC |
http://dx.doi.org/10.1007/s00216-017-0574-5 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Oak Ridge National Laboratory, Chemical Sciences Division, UNITED STATES OF AMERICA.
Antimony-119 (119Sb) is one of the most attractive Auger-electron emitters identified to date, but it remains practically unexplored for targeted radiotherapy because no chelators have been identified to stably bind this metalloid in vivo. In a departure from current studies focused on chelator development for Sb(III), we explore the chelation chemistry of Sb(V) using the tris-catecholate ligand TREN-CAM. Through a combination of radiolabeling, spectroscopic, solid-state, and computational studies, the radiochemistry and structural chemistry of TREN-CAM with 1XX/natSb(V) were established.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Engineering, Ulster University, York Street, Belfast, Northern Ireland, BT15 1AP, UK.
Recent advancements in atomic force microscopy (AFM) have enabled detailed exploration of materials at the molecular and atomic levels. These developments, however, pose a challenge: the data generated by microscopic and spectroscopic experiments are increasing rapidly in both size and complexity. Extracting meaningful physical insights from these datasets is challenging, particularly for multilayer heterogeneous nanoscale structures.
View Article and Find Full Text PDFWe developed a scanning dual-comb spectroscopic microscopy (S-DCSM) system to acquire multidimensional optical information of transparent or semi-transparent samples. The system demonstrated the capability to perform spectral imaging of absorbance, optical phase, optical thickness, linear dichroism, and birefringence within the spectral range covered by optical frequency combs (OFCs). The spatial distribution of optical thickness in HeLa cells was measured as 8.
View Article and Find Full Text PDFFront Optoelectron
January 2025
Institute of Physics, Saratov State University, Saratov, 410012, Russia.
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.
View Article and Find Full Text PDFEur J Neurol
February 2025
Department of Biomedical and NeuroMotor Sciences, University of Bologna, Bologna, Italy.
Objective: Disorders of arousal (DoA) are characterized by an intermediate state between wakefulness and deep sleep, leading to incomplete awakenings from NREM sleep. Multimodal studies have shown subtle neurophysiologic alterations even during wakefulness in DoA. The aim of this study was to explore the brain functional connectivity in DoA and the metabolic profile of the anterior and posterior cingulate cortex, given its pivotal role in cognitive and emotional processing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!