Ultrafast atomic-scale visualization of acoustic phonons generated by optically excited quantum dots.

Struct Dyn

Physical Biology Center for Ultrafast Science and Technology, Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology, Pasadena, California 91125, USA.

Published: July 2017

Understanding the dynamics of atomic vibrations confined in quasi-zero dimensional systems is crucial from both a fundamental point-of-view and a technological perspective. Using ultrafast electron diffraction, we monitored the lattice dynamics of GaAs quantum dots-grown by Droplet Epitaxy on AlGaAs-with sub-picosecond and sub-picometer resolutions. An ultrafast laser pulse nearly resonantly excites a confined exciton, which efficiently couples to high-energy acoustic phonons through the deformation potential mechanism. The transient behavior of the measured diffraction pattern reveals the nonequilibrium phonon dynamics both within the dots and in the region surrounding them. The experimental results are interpreted within the theoretical framework of a non-Markovian decoherence, according to which the optical excitation creates a localized polaron within the dot and a travelling phonon wavepacket that leaves the dot at the speed of sound. These findings indicate that integration of a phononic emitter in opto-electronic devices based on quantum dots for controlled communication processes can be fundamentally feasible.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5552391PMC
http://dx.doi.org/10.1063/1.4998009DOI Listing

Publication Analysis

Top Keywords

acoustic phonons
8
quantum dots
8
ultrafast atomic-scale
4
atomic-scale visualization
4
visualization acoustic
4
phonons generated
4
generated optically
4
optically excited
4
excited quantum
4
dots understanding
4

Similar Publications

investigations on hydrodynamic phonon transport: From diffusion to convection.

Int J Heat Mass Transf

March 2024

Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, CA 90095, United States of America.

In classical theory, heat conduction in solids is regarded as a diffusion process driven by a temperature gradient, whereas fluid transport is understood as convection process involving the bulk motion of the liquid or gas. In the framework of theory, which is directly built upon quantum mechanics without relying on measured parameters or phenomenological models, we observed and investigated the fluid-like convective transport of energy carriers in solid heat conduction. Thermal transport, carried by phonons, is simulated in graphite by solving the Boltzmann transport equation using a Monte Carlo algorithm.

View Article and Find Full Text PDF

Thermodynamics and transport in molten chloride salts and their mixtures.

Phys Chem Chem Phys

December 2024

School of Physical and Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.

Molten salts are important in a number of energy applications, but the fundamental mechanisms operating in ionic liquids are poorly understood, particularly at higher temperatures. This is despite their candidacy for deployment in solar cells, next-generation nuclear reactors, and nuclear pyroprocessing. We perform extensive molecular dynamics simulations over a variety of molten chloride salt compositions at varying temperature and pressures to calculate the thermodynamic and transport properties of these liquids.

View Article and Find Full Text PDF

In pursuit of high- hydride superconductors, the molecular hydrides have attracted less attention because the hydrogen quasimolecules are usually inactive for superconductivity. Here, we report on the successful synthesis of a novel bismuth hydride superconductor 2/-BiH at pressures around 170-180 GPa. Its structure comprises bismuth atoms and elongated hydrogen molecules with a H-H bond length of 0.

View Article and Find Full Text PDF

We demonstrate that working with a correct phase-space electronic Hamiltonian captures electronic inertial effects. In particular, we show that phase space surface hopping dynamics do not suffer (at least to very high order) from non-physical non-adiabatic transitions between electronic eigenstates during the course of pure nuclear translational and rotational motion. This work opens up many new avenues for quantitatively investigating complex phenomena, including angular momentum transfer between chiral phonons and electrons as well as chiral-induced spin selectivity effects.

View Article and Find Full Text PDF

The utilization of excited charge carriers in semiconductor nanocrystals (NCs) for optoelectronic technologies has been a long-standing goal in the field of nanoscience. Experimental efforts to extend the lifetime of excited carriers have therefore been a principal focus. To understand the limits of these lifetimes, in this work, we theoretically study the time scales of pure electron relaxation in negatively charged NCs composed of two prototypical materials: CdSe and CdS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!