Free-standing films of metal octaethylporphyrins (MOEPs) were prepared for the first time by a physical vapor deposition on surface of an ionic liquid (IL). Different from those on solid surfaces, the as-obtained films were very compact and with plannar structure. The monitoring of time-dependent process indicated that the high surface energy of IL and the strong π…π interaction between MOEP molecules played key roles in forming such films. Furthermore, the as-obtained film showed good transferability, which made it possible to be easily transferred to any substrates for further device application. More importantly, the prototype photodetectors based on free-standing films of MOEP showed ultra flexibility, mechanical stability, and durability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575091 | PMC |
http://dx.doi.org/10.1038/s41598-017-10293-2 | DOI Listing |
Nat Nanotechnol
January 2025
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.
View Article and Find Full Text PDFMolecules
December 2024
College of Mechanical and Electronic Engineering, Tarim University, Alar 843300, China.
Biosensors (Basel)
November 2024
Engineering Physics, McMaster University, Hamilton, ON L8S 4L8, Canada.
Free-standing capillary microfluidic channels were directly printed over printed electrodes using a particle/polymer mixture to fabricate microfluidic-electrochemical devices on polyethylene terephthalate (PET) films. Printed devices with no electrode modification were demonstrated to have the lowest limit of detection (LOD) of 7 μM for sensing glucose. The study shows that both a low polymer concentration in the mixture for printing the microfluidic channels and surface modification of the printed microfluidic channels using 3-aminopropyltrimethoxysilane can substantially boost the device's performance.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
December 2024
Department of Materials Science, University of Milano-Bicocca, Via Roberto Cozzi 55, 20125 Milano, Italy.
The adsorption of (X = Ni, Pd, and Pt) nanoclusters is simulated by using first-principles methods on MgO(100) and on a MgO monolayer supported on Ag(100), considering the presence of interfacial oxygen. On both the free-standing MgO surface and MgO/Ag, all clusters exhibit robust adhesion and negative charge transfer. molecular dynamics calculations at 200 K demonstrate the stability of the nanoparticles on the MgO/Ag support.
View Article and Find Full Text PDFChembiochem
December 2024
Research Center for Analytical Sciences, Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China.
Smart shape-memory DNA hydrogels, which can respond to various types of external stimuli and undergo macroscopic shape deformations, have shown great potential in various applications. By constructing free-standing films, the deformation and response properties of these hydrogels can be further enhanced, and visualized deformation can be achieved. However, DNA hydrogels that can exhibit rapid and high-degree shape deformations, such as the inverse shape deformations, are still lacking.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!