A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Change in sensitivity to visual error in superior colliculus during saccade adaptation. | LitMetric

Change in sensitivity to visual error in superior colliculus during saccade adaptation.

Sci Rep

Department of Physiology and Biophysics, Washington National Primate Research Center, University of Washington, Seattle, Washington, Washington, 98195-7330, USA.

Published: August 2017

Saccadic eye movements provide a valuable model to study the brain mechanisms underlying motor learning. If a target is displaced surreptitiously while a saccade is underway, the saccade appears to be in error. If the error persists gradual neuronal adjustments cause the eye movement again to land near the target. This saccade adaptation typically follows an exponential time course, i.e., adaptation speed slows as adaptation progresses, indicating that the sensitivity to error decreases during adaptation. Previous studies suggested that the superior colliculus (SC) sends error signals to drive saccade adaptation. The objective of this study is to test whether the SC error signal is related to the decrease in the error sensitivity during adaptation. We show here that the visual activity of SC neurons, which is induced by a constant visual error that drives adaptation, decreases during saccade adaptation. This decrease of sensitivity to visual error was not correlated with the changes of primary saccade amplitude. Therefore, a possible interpretation of this result is that the reduction of visual sensitivity of SC neurons contributes an error sensitivity signal that could help control the saccade adaptation process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574973PMC
http://dx.doi.org/10.1038/s41598-017-10242-zDOI Listing

Publication Analysis

Top Keywords

saccade adaptation
20
visual error
12
error
10
adaptation
10
sensitivity visual
8
superior colliculus
8
saccade
8
error sensitivity
8
visual
5
sensitivity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!