Non-viral vectors are widely used and investigated for the delivery of genetic material into cells. However, gene delivery barriers like lysosomal degradation, serum inhibition and transient gene expression so far still limit their clinical applications. Aiming to overcome these limitations, a pH-sensitive hybrid gene vector (PSL complex) was designed by self-assembly of poly(amidoamine) (PAMAM) dendrimers, the histidine-rich peptide LAH4-L1 and the sleeping beauty transposon system (SB transposon system, a plasmid system capable of efficient and precise genomic insertion). Transfection studies revealed that PSL complexes achieved excellent efficiency in all investigated cell lines (higher than 90% in HeLa cells and over 30% in MDCK cells, a difficult-to-transfect cell line). Additionally, the PSL complexes showed high serum tolerance and exhibited outstanding transfection efficiency even in medium containing 50% serum (higher than 90% in HeLa cells). Moreover, a high level of long-term gene expression (over 30% in HeLa cells) was observed. Furthermore, PSL complexes not only resulted in high endocytosis, but also showed enhanced ability of endosomal escape compared to PAMAM/DNA complexes. These results demonstrate that simple association of PAMAM dendrimers, LAH4-L1 peptides and the SB transposon system by self-assembly is a general and promising strategy for efficient and safe gene delivery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575053 | PMC |
http://dx.doi.org/10.1038/s41598-017-10049-y | DOI Listing |
Front Mol Neurosci
January 2025
Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland.
Introduction: The neuron-specific K-Cl cotransporter KCC2 maintains low intracellular chloride levels, which are crucial for fast GABAergic and glycinergic neurotransmission. KCC2 also plays a pivotal role in the development of excitatory glutamatergic neurotransmission by promoting dendritic spine maturation. The cytoplasmic C-terminal domain (KCC2-CTD) plays a critical regulatory role in the molecular mechanisms controlling the cotransporter activity through dimerization, phosphorylation, and protein interaction.
View Article and Find Full Text PDFGigascience
January 2025
Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, 53113 Bonn, Germany.
Background: In this study, we present an in-depth analysis of the Eurasian minnow (Phoxinus phoxinus) genome, highlighting its genetic diversity, structural variations, and evolutionary adaptations. We generated an annotated haplotype-phased, chromosome-level genome assembly (2n = 50) by integrating high-fidelity (HiFi) long reads and chromosome conformation capture data (Hi-C).
Results: We achieved a haploid size of 940 megabase pairs (Mbp) for haplome 1 and 929 Mbp for haplome 2 with high scaffold N50 values of 36.
mBio
January 2025
Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
Structural maintenance of chromosomes (SMC) are ubiquitously distributed proteins involved in chromosome organization. Deletion of causes severe growth phenotypes in many organisms. Surprisingly, can be deleted in , a member of the phylum, without any apparent growth phenotype.
View Article and Find Full Text PDFBMC Microbiol
January 2025
Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
Background: Wastewater systems are usually considered antibiotic resistance hubs connecting human society and the natural environment. Antibiotic usage can increase the abundance of both ARGs (antibiotic resistance genes) and MGEs (mobile gene elements). Understanding the transcriptomic profiles of ARGs and MGEs remains a major research goal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Hematology and Oncology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Children's Hospital of Chongqing Medical University, No 136 Zhongshan 2 road, YuZhong district, Chongqing, 400014, China.
Genetic alterations play a pivotal role in leukemic clonal transformation, significantly influencing disease pathogenesis and clinical outcomes. Here, we report a novel fusion gene and investigate its pathogenic role in acute lymphoblastic leukemia (ALL). We engineer a transposon transfection system expressing the TOP2B::AFF2 transcript and introduce it into Ba/F3 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!