A morphologically stable bulk heterojunction (BHJ) with a large heterojunction area is prepared by reducing the portion of the small band gap polymer (PTB7) and fullerene intermixture through a sequential deposition (SqD) of the nanostructured PTB7 and the fullerene layer. The nanostructured PTB7 layer is prepared using a ternary solvent composed of chlorobenzene, 1,8-diiodooctane (DIO) and 1-chloronaphthalene (1-CN). Adding DIO and 1-CN enhances the ordering of PTB7 chains and results in a nanostructured polymer surface. The grazing incidence X-ray diffraction results reveal that the SqD of the nanostructured PTB7 and fullerene layers forms the BHJ with little intermixing between the polymer and the fullerene domains compared to the BHJ formed by the deposition of the blended PTB7 and fullerene solution (BSD). The OPV utilizing the SqD processed BHJ (SqD-OPV) exhibits a power conversion efficiency (PCE) of 7.43%, which is similar to that when the BSD processed BHJ (BSD-OPV) is utilized. Furthermore, the SqD-OPV exhibits an excellent thermal stability. The SqD-OPV maintains its initial PCE even after thermal annealing at 140 °C for 10 days, whereas the BSD-OPV maintains 78% of its initial efficiency under the same condition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5575051 | PMC |
http://dx.doi.org/10.1038/s41598-017-09167-4 | DOI Listing |
Macromol Rapid Commun
December 2024
Department of Chemistry, Middle East Technical University, Ankara, 06800, Turkey.
Due to their tunable energy levels, ability for intense light absorption, stability and ease of purification, non-fullerene acceptors (NFAs) have significantly contributed to the progress of organic photovoltaics (OPVs). Herein, a series of newly designed and synthesized NFAs specifically tailored are presented for OPV applications. A new class of NFAs possessing carbazole, fluorene, silafluorene derivatives, and benzothiadiazoles are synthesized.
View Article and Find Full Text PDFThe impact of additives on the nanoscale structures of spin-cast polymer composite films, particularly in polymer solar cells, is a topic of significant interest. This study focuses on the blend film comprising poly(thieno[3,4-]thio-phene--benzodi-thio-phene) (PTB7) and [6,6]-phenyl-C-butyric acid methyl ester (PCBM), exploring how additives like 1,8-di-iodo-octane (DIO) influence the film structures spin-cast from chloro-benzene solution. Combined results of specular X-ray and neutron reflectivity, grazing-incidence small- and wide-angle X-ray scattering (GISAXS and GIWAXS), and X-ray photoelectron spectroscopy indicate that DIO could significantly enhance the dispersion of PCBM and reduce composition inhomogeneity in the film.
View Article and Find Full Text PDFACS Omega
July 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
Nonfullerene acceptors (NFAs) have emerged as tremendous materials, efficiently advancing bulk-heterojunction organic solar cells (OSCs) technology. Unlike their fullerene counterparts, NFAs offer the unique advantage of finely tunable electronic energy levels and optical characteristics, which correspond to substantial enhancement in power conversion efficiency of OSCs. Herein, we have introduced a new series of near-infrared NFAs (AY1-AY8) to advance this technology further.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
October 2024
School of Chemistry, Sambalpur University, 768019, Jyoti Vihar, Sambalpur, India.
Asymmetric wide-band gap fullerene-free acceptors (FFAs) play a crucial role in organic solar cells (OSCs). Here, we designed and synthesized a simple asymmetric coumarin-anthracene conjugate named CA-CN with optical band gap of 2.1 eV in a single-step condensation reaction.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
September 2024
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, PR China. Electronic address:
Eight molecular structures (BT-A1 to BT-A8) with high-performance non-fullerene acceptor (NFA) were selected for organic solar cells (OSCs) and non-linear optical (NLO) applications. Their electronic, photovoltaic (PV) and optoelectronic properties were tuned by adding powerful electron-withdrawing groups to the acceptor (A) of the D-π-A-π-D structure. Using time-dependent density functional theory (TD-DFT) techniques, based on the laws of quantum chemical calculations, the absorption spectra, stability of the highest and lowest-energy molecular orbitals (HOMO/LUMOs), electron density, intramolecular charge transfer (ICT), transition density matrix (TDM), were examined.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!