The eukaryotic Hsp90 chaperone machinery comprises many co-chaperones and regulates the conformation of hundreds of cytosolic client proteins. Therefore, it is not surprising that the Hsp90 machinery has become an attractive therapeutic target for diseases such as cancer. The compounds used so far to target this machinery affect the entire Hsp90 system. However, it would be desirable to achieve a more selective targeting of Hsp90-co-chaperone complexes. To test this concept, in this-proof-of-principle study, we screened for modulators of the interaction between Hsp90 and its co-chaperone Aha1, which accelerates the ATPase activity of Hsp90. A FRET-based assay that monitored Aha1 binding to Hsp90 enabled identification of several chemical compounds modulating the effect of Aha1 on Hsp90 activity. We found that one of these inhibitors can abrogate the Aha1-induced ATPase stimulation of Hsp90 without significantly affecting Hsp90 ATPase activity in the absence of Aha1. NMR spectroscopy revealed that this inhibitory compound binds the N-terminal domain of Hsp90 close to its ATP-binding site and overlapping with a transient Aha1-interaction site. We also noted that this inhibitor does not dissociate the Aha1-Hsp90 complex but prevents the specific interaction with the N-terminal domain of Hsp90 required for catalysis. In consequence, the inhibitor affected the activation and processing of Hsp90-Aha1-dependent client proteins We conclude that it is possible to abrogate a specific co-chaperone function of Hsp90 without inhibiting the entire Hsp90 machinery. This concept may also hold true for other co-chaperones of Hsp90.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641884PMC
http://dx.doi.org/10.1074/jbc.M117.797829DOI Listing

Publication Analysis

Top Keywords

hsp90
14
client proteins
8
hsp90 machinery
8
entire hsp90
8
atpase activity
8
n-terminal domain
8
domain hsp90
8
chemical compound
4
compound inhibiting
4
inhibiting aha1-hsp90
4

Similar Publications

Heat stress poses a significant challenge to animal husbandry, contributing to oxidative stress, intestinal mucosal injury, and apoptosis, which severely impact animal health, growth, and production efficiency. The development of safe, sustainable, and naturally derived solutions to mitigate these effects is critical for advancing sustainable agricultural practices. Butyrolactone-I (BTL-I), a bioactive compound derived from deep-sea fungi (Aspergillus), shows promise as a functional feed additive to combat heat stress in animals.

View Article and Find Full Text PDF

HSP90 stabilizes visual cycle retinol dehydrogenase 5 in the endoplasmic reticulum by inhibiting its degradation during autophagy.

J Biol Chem

December 2024

The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The Joint National Laboratory of Antibody Drug Engineering, Henan Province Engineering Research Center of Fundus Disease and Ocular Trauma Prevention and Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China; Henan International Joint Research Laboratory for Ocular Immunology and Retinal Injury Repair, Zhengzhou, China; Kaifeng Key Lab for Cataracts and Myopia, Kaifeng Central Hospital, Kaifeng, China; Eye Institute, Henan Academy of Innovations in Medical Science, Zhengzhou, China. Electronic address:

Genetic mutations in retinol dehydrogenase 5 (RDH5), a rate-limiting enzyme of the visual cycle, is associated with nyctalopia, AMD and stationary congenital fundus albipunctatus (FA). A majority of these mutations impair RDH5 protein expression and intracellular localization. However, the regulatory mechanisms underlying RDH5 metabolism remain unclear.

View Article and Find Full Text PDF

Neuronal inclusions of hyperphosphorylated TDP-43 are hallmarks of disease for most patients with amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene coding for TDP-43, can cause some cases of familial inherited ALS (fALS), indicating dysfunction of TDP-43 drives disease. Aggregated, phosphorylated TDP-43 may contribute to disease phenotypes; alternatively, TDP-43 aggregation may be a protective cellular response sequestering toxic protein away from the rest of the cell.

View Article and Find Full Text PDF

Chaperones vs. oxidative stress in the pathobiology of ischemic stroke.

Front Mol Neurosci

December 2024

Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.

As many proteins prioritize functionality over constancy of structure, a proteome is the shortest stave in the Liebig's barrel of cell sustainability. In this regard, both prokaryotes and eukaryotes possess abundant machinery supporting the quality of the proteome in healthy and stressful conditions. This machinery, namely chaperones, assists in folding, refolding, and the utilization of client proteins.

View Article and Find Full Text PDF

Cardiac secreted HSP90α exacerbates pressure overload myocardial hypertrophy and heart failure.

Redox Biol

December 2024

Shanghai Institute of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; NHC Key Laboratory of Ischemic Heart Diseases, and Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, China. Electronic address:

Sustained myocardial hypertrophy or left ventricular hypertrophy (LVH) triggered by pressure overload is strongly linked to adverse cardiovascular outcomes. Here, we investigated the clinical relationship between serum HSP90α (an isoform of HSP90) levels and LVH in patients with hypertension or aortic stenosis (AS) and explored underlying mechanisms in pressure overload mouse model. We built a pressure overload mouse model via transverse aortic constriction (TAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!