Electrochemiluminescent resonance energy transfer of polymer dots for aptasensing.

Biosens Bioelectron

MOE Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China. Electronic address:

Published: February 2018

This work designed a three-component polymer for the preparation of polymer dots (Pdots). The polymer contained 9-(diphenylmethylene)-9H-fluorene (DPF), 9,9-dioctyl-9H-fluorene (DOF) and 1,1'-binaphthyl moieties, and was synthesized via Pd-catalyzed Suzuki reaction. It exhibited obvious yellow-colored aggregation-induced emission (AIE) for fluorescence enhancement at 543nm via an intramolecular fluorescence resonance energy transfer from DOF moiety to DPF moiety. The Pdots prepared by nanoprecipitation could be conveniently cast on electrode surface and showed a stable anodic electrochemiluminescence (ECL) emission in the presence of triethylamine as a co-reactant. The ECL emission could be effectively quenched by rhodamine B via resonance energy transfer, which led to an "off-on" switch for the design of ECL sensing methodology. Using Pb as a target model, an ECL aptasensor for the detection of trace Pb was proposed, which showed a linear range of 100pM to 1.0μM with a detection limit down to 38.0pM This work demonstrated the first Pdots prepared with AIE-active polymer for highly efficient ECL sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2017.08.047DOI Listing

Publication Analysis

Top Keywords

resonance energy
12
energy transfer
12
polymer dots
8
pdots prepared
8
ecl emission
8
ecl sensing
8
polymer
5
ecl
5
electrochemiluminescent resonance
4
transfer polymer
4

Similar Publications

Dynamic nuclear polarization (DNP) and emerging quantum technologies rely on the spin transfer in electron-nuclear hybrid quantum systems. Spin transfers might be suppressed by larger couplings, e.g.

View Article and Find Full Text PDF

Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.

View Article and Find Full Text PDF

Background: Exposure to environmental chemicals such as lead (Pb) during vulnerable developmental periods and even in adult stage can result in adverse health outcomes later in life. Human cohort studies have demonstrated associations between Pb exposure and Alzheimer's Disease (AD) onset in later life which were further corroborated by findings from animal studies. The molecular pathway linking Pb exposure and increased AD risk, however, remains elusive.

View Article and Find Full Text PDF

We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities. The technique uses quantum optimal control to favorably harness the multipath interference of the stray trajectories produced by imperfect atom-optics operations. We apply this method to a resonant atom interferometer and achieve thousandfold phase amplification, representing a 50-fold improvement over the performance observed without optimized control.

View Article and Find Full Text PDF

The BESIII Collaboration recently performed a precise measurement of the e^{+}e^{-}→DD[over ¯] Born cross sections, and confirmed the G(3900) structure reported by BABAR and Belle with high significance. We identify the G(3900) as the first P-wave DD[over ¯]^{*}/D[over ¯]D^{*} molecular resonance. The experimental and theoretical identification of the P-wave dimeson state holds paramount importance in enhancing our comprehension of the nonperturbative QCD and few-body physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!