The electron-transfer abilities of the copper guanidinoquinoline (GUAqu) complexes [Cu(TMGqu) ] and [Cu(DMEGqu) ] (TMGqu=tetramethylguanidinoquinoline, DMEGqu=dimethylethylguanidinoquinoline) were examined in different solvents. The determination of the electron self-exchange rate based on the Marcus theory reveals the highest electron-transfer rate of copper complexes with pure N-donor ligands (k =1.2×10  s  m in propionitrile). This is supported by an examination of the reorganisation energy of the complexes by using Eyring theory and DFT calculations. The low reorganisation energies in nitrile solvents correspond with the high electron-transfer rates of the complexes. Therefore, the [Cu(GUAqu) ] complexes act as good entatic states model of copper enzymes. The structural influence of the complexes on the kinetic parameters shows that the TMGqu system possesses a higher electron-transfer rate than DMEGqu. Supporting DFT calculations give a closer insight into the kinetics and thermodynamics (Nelsen's four-point method and isodesmic reactions) of the electron transfer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201703261DOI Listing

Publication Analysis

Top Keywords

copper guanidinoquinoline
8
electron-transfer rate
8
dft calculations
8
complexes
7
electron-transfer
5
copper
4
guanidinoquinoline complexes
4
complexes entatic
4
entatic state
4
state models
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!