Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus.

PLoS One

Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America.

Published: October 2017

Skeletal muscle resistance to insulin is related to accumulation of lipid-derived products, but it is not clear whether this accumulation is caused by skeletal muscle mitochondrial dysfunction. Diabetes and obesity are reported to have a selective effect on the function of subsarcolemmal and interfibrillar mitochondria in insulin-resistant skeletal muscle. The current study investigated the role of the subpopulations of mitochondria in the pathogenesis of insulin resistance in the absence of obesity. A non-obese spontaneous rat model of type 2 diabetes mellitus, (Goto-Kakizaki), was used to evaluate function and biochemical properties in both populations of skeletal muscle mitochondria. In subsarcolemmal mitochondria, minor defects are observed whereas in interfibrillar mitochondria function is preserved. Subsarcolemmal mitochondria defects characterized by a mild decline of oxidative phosphorylation efficiency are related to ATP synthase and structural alterations of inner mitochondria membrane but are considered unimportant because of the absence of defects upstream as shown with polarographic and spectrophometric assays. Fatty acid transport and oxidation is preserved in both population of mitochondria, whereas palmitoyl-CoA increased 25% in interfibrillar mitochondria of diabetic rats. Contrary to popular belief, these data provide compelling evidence that mitochondrial function is unaffected in insulin-resistant skeletal muscle from T2DM non-obese rats.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5574550PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183978PLOS

Publication Analysis

Top Keywords

skeletal muscle
24
subsarcolemmal mitochondria
12
interfibrillar mitochondria
12
mitochondria
10
model type
8
type diabetes
8
diabetes mellitus
8
insulin-resistant skeletal
8
muscle
6
skeletal
5

Similar Publications

Protocol for quantifying muscle fiber size, number, and central nucleation of mouse skeletal muscle cross-sections using Myotally software.

STAR Protoc

January 2025

Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA; Neurology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA. Electronic address:

Here, we present a protocol for using Myotally, a user-friendly software for fast, automated quantification of muscle fiber size, number, and central nucleation from immunofluorescent stains of mouse skeletal muscle cross-sections. We describe steps for installing the software, preparing compatible images, finding the file path, and selecting key parameters like image quality and size limits. We also detail optional features, such as measuring mean fluorescence.

View Article and Find Full Text PDF

miR-449a/miR-340 reprogram cell identity and metabolism in fusion-negative rhabdomyosarcoma.

Cell Rep

January 2025

Translational Cardiomyology Laboratory, Stem Cell and Developmental Biology, Department of Development and Regeneration, KU Leuven, Herestraat 49, 3000 Leuven, Belgium; Histology and Medical Embryology Unit, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy. Electronic address:

Rhabdomyosarcoma (RMS), the most common pediatric soft tissue sarcoma, arises in skeletal muscle and remains in an undifferentiated state due to transcriptional and post-transcriptional regulators. Among its subtypes, fusion-negative RMS (FN-RMS) accounts for the majority of diagnoses in the pediatric population. MicroRNAs (miRNAs) are non-coding RNAs that modulate cell identity via post-transcriptional regulation of messenger RNAs (mRNAs).

View Article and Find Full Text PDF
Article Synopsis
  • This systematic review investigates how body composition, particularly skeletal muscle mass, impacts vascular health measures like arterial stiffness and structure.
  • Researchers conducted a thorough literature search and included 15 observational studies with over 21,000 participants, assessing various vascular health indices.
  • The findings show that higher fat-free mass correlates positively with carotid artery thickness, while body fat percentage is linked to arterial stiffness, indicating a need for further research on specific body composition factors and their health implications.
View Article and Find Full Text PDF

Objectives: To study the correlation between sarcopenia and hypertrophy of the future liver remnant(FLR) in patients undergoing portal vein embolization(PVE) before liver resection, and to assess the outcomes after resection.

Methods: This retrospective study examined patients underwent PVE from May 2012 to May 2023. Demographic, clinical and laboratory features were documented and total liver volumes(TLV) and FLR volumes were measured before and 2-4 weeks after PVE.

View Article and Find Full Text PDF

Sarcopenic obesity (SO) is a body composition phenotype derived from the simultaneous presence in the same individual of an increase in fat mass and a decrease in skeletal muscle mass and/or function. Several protocols for the diagnosis of SO have been proposed in the last two decades making prevalence and disease risk estimates of SO heterogeneous and challenging to interpret. Dementia is a complex neurological disorder that significantly impacts patients, carers and healthcare systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!