A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Superconductor-superconductor bilayers for enhancing single-photon detection. | LitMetric

Superconductor-superconductor bilayers for enhancing single-photon detection.

Nanotechnology

Department of Materials Science & Engineering, Technion-Israel Institute of Technology, Haifa, 32000, Israel. Solid State Institute, Technion-Israel Institute of Technology, Haifa, 32000, Israel. Research Laboratory of Electronics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America.

Published: October 2017

Here, we optimized ultrathin films of granular NbN on SiO and of amorphous αWSi. We showed that hybrid superconducting nanowire single-photon detectors (SNSPDs) made of 2 nm thick αWSi films over 2 nm thick NbN films exhibit advantageous coexistence of timing (<5 ns reset time and 52 ps timing jitter) and efficiency (>96% quantum efficiency) performance. We discuss the governing mechanism of this hybridization via the proximity effect. Our results demonstrate saturated SNSPDs performance at 1550 nm optical wavelength and suggest that such hybridization can significantly expand the range of available superconducting properties, impacting other nano-superconducting technologies. Lastly, this hybridization may be used to tune properties, such as the amorphous character of superconducting films.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aa8902DOI Listing

Publication Analysis

Top Keywords

superconductor-superconductor bilayers
4
bilayers enhancing
4
enhancing single-photon
4
single-photon detection
4
detection optimized
4
optimized ultrathin
4
films
4
ultrathin films
4
films granular
4
granular nbn
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!