We tested the effect of low temperature (18-20 °C) applied at the 13-22 days of imago life. We detected prolongation of individual life span. The effect is due to prolongation of the first phase of the annuity curve and thus to further delay of the next ones. This may lead to delay of mature pathology and prolongation of maximal life span. The effect is not dependent on sample size.

Download full-text PDF

Source

Publication Analysis

Top Keywords

low temperature
8
life span
8
[on discontinuity
4
discontinuity annuity
4
annuity curves
4
curves drosophila
4
drosophila melanogaster
4
melanogaster canton-s
4
canton-s strain
4
strain low
4

Similar Publications

Background: Severe acute respiratory syndrome coronavirus 2 was found first in Wuhan and declared a pandemic by the World Health Organization. Coinfection with other respiratory viruses may occur, complicating the diagnosis and treatment of coronavirus disease 2019 . Herein, we identified a Karolinska Institute polyomavirus Stockholm 60 present in a nasopharyngeal swab of a patient with severe acute respiratory syndrome coronavirus 2 infection using next-generation sequencing with an enrichment method.

View Article and Find Full Text PDF

In response to climate change mitigation efforts, improving the efficiency of heat networks is becoming increasingly important. An efficient operation of energy systems depends on faultless performance. Following the need for effective fault detection and elimination methods, this study suggests a three-step workflow for increasing automation in managing defective substations on the user level within heat networks.

View Article and Find Full Text PDF

Multispectral Integrated Black Arsenene Phototransistors for High-Resolution Imaging and Enhanced Secure Communication.

ACS Nano

December 2024

State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu-Tian Road, Shanghai 200083, China.

The demand for broadband, room-temperature infrared, and terahertz (THz) detectors is rapidly increasing owing to crucial applications in telecommunications, security screening, nondestructive testing, and medical diagnostics. Current photodetectors face significant challenges, including high intrinsic dark currents and the necessity for cryogenic cooling, which limit their effectiveness in detecting low-energy photons. Here, we introduce a high-performance ultrabroadband photodetector operating at room temperature based on two-dimensional black arsenene (b-As) nanosheets.

View Article and Find Full Text PDF

Introduction And Aims: Dental practices pose a high risk of microbial contamination due to frequent exposure to bodily fluids like saliva and blood. Bioengineering innovations have emerged as vital tools to enhance infection control in dental settings. This review aims to assess the global applications and effectiveness of these innovations, particularly focusing on antimicrobial biomaterials, sterilization techniques, and personal protective equipment (PPE).

View Article and Find Full Text PDF

The use of self-adaptive principal components in PCA-based denoising.

J Magn Reson

December 2024

Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 747/2, 180 00 Prague 8, Czech Republic.

PCA-based denoising usually implies either discarding a number of high-index principal components (PCs) of a data matrix or their attenuation according to a regularization model. This work introduces an alternative, model-free, approach to high-index PC attenuation that seeks to average values of PC vectors as if they were expected from noise perturbation of data. According to the perturbation theory, the average PCs are attenuated versions of the clean PCs of noiseless data - the higher the noise-related content in a PC vector, the lower is its average's norm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!