Self-assembling molecular systems often display amplified chirality compared to the monomeric state, which makes the molecular recognition more sensitive to chiral analytes. Herein, we report the almost absolute enantioselective recognition of a chiral perylenediimide (PDI) molecule by chiral supramolecular nanofibers of a bichromophoric naphthalenediimide (NDI) derivative. The chiral recognition was evaluated through the Förster resonance energy transfer (FRET) from the NDI-based host nanofibers to the guest PDI molecules. The excitation energy was successfully transferred to the guest molecule through efficient energy migration along the host nanofiber, thus demonstrating the light-harvesting capability of these hybrid systems. Furthermore, circularly polarized luminescence (CPL) was enantioselectively sensitized by the guest molecule as the wavelength band and sign of the CPL signal were switched in response to the chiral guest molecule.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201707160 | DOI Listing |
J Mater Chem B
January 2025
The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai 200234, China.
Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Peking University, school of materials science and engineering, CHINA.
Dynamic liquid-liquid phase separation (LLPS) of intrinsically disordered proteins (IDPs) and associated assembly and disassembly of biomolecular condensates play crucial roles in cellular organization and metabolic networks. These processes are often regulated by supramolecular interactions. However, the complex and disordered structures of IDPs, coupled with their rapid conformational fluctuations, pose significant challenges for reconstructing supramolecularly-regulated dynamic LLPS systems and quantitatively illustrating variations in molecular interactions.
View Article and Find Full Text PDFNanoscale
January 2025
Research Institute for Science and Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
Tiara-like metal nanoclusters (TNCs) composed of group 10 transition metals and thiolates can easily change their number of polymerization and include various molecules or metal ions as guests within their ring structures. Therefore, they are expected to be applied in sensing, storage, and catalyst materials based on their selective inclusion characteristics. However, there are very few reports regarding the principles of selective inclusion for guest molecules/ions in TNCs.
View Article and Find Full Text PDFCommun Chem
January 2025
Institute of Biochemistry, University of Münster, Münster, Germany.
Translation of mRNA into protein is a fundamental process and tightly controlled during development. Several mechanisms acting on the mRNA level regulate when and where an mRNA is expressed. To explore the effects of conditional and transient gene expression in a developing organism, it is vital to experimentally enable abrogation and restoration of translation.
View Article and Find Full Text PDFNeoplasia
January 2025
Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA; Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, FL, USA. Electronic address:
Research elucidating the role of the microbiome in carcinogenesis has grown exponentially over the past decade. Initially isolated to associative studies on colon cancer development, the field has expanded to encompass nearly every solid and liquid malignancy that may afflict the human body. Investigations are rapidly progressing from association to causation and one particular area of causal effect relates to microbial metabolites and how they influence cancer development, progression, and treatment response.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!