Taurine Protects Glutamate Neurotoxicity in Motor Neuron Cells.

Adv Exp Med Biol

College of Pharmacy and Research Center for Cell Fate Control, Sookmyung Women's University, Seoul, South Korea.

Published: October 2018

Amyotrophic lateral sclerosis (ALS) is a fetal neurodegenerative disease that results in motor dysfunction and death. However, there is no cure or effective therapy for ALS. In our previous results, taurine protects motor neurons by repairing for constitutive oxidative stress in an ALS model. ALS is caused by multiple factors including inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, glutamate excitotoxicity and proteasomal dysfunction. Especially, glutamate excitotoxicity has been well known as a mediator in the disease process, and may occur from changes in the excitability of the neurons being stimulated. D-serine is known to a key factor of determination on glutamate toxicity in ALS. Therefore, in the present study, we investigated neuroprotective effects of taurine from glutamate excitotoxicity using motor neuron cells, mtSOD1 (G93A) transgenic cell line model of ALS (NSC-34/hSOD1G93A cells). We evidenced that taurine protects cultured motor neurons from neurotoxic injury. Our findings indicated that taurine has neuroprotective properties and may be a good candidate for therapeutic trials in ALS.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-94-024-1079-2_70DOI Listing

Publication Analysis

Top Keywords

taurine protects
12
glutamate excitotoxicity
12
motor neuron
8
neuron cells
8
motor neurons
8
oxidative stress
8
model als
8
als
7
taurine
5
glutamate
5

Similar Publications

Due to the continuous exposure to bisphenol-A (BPA), the current study was conducted to evaluate taurine's neuroprotective action against BPA's adverse effect on the brain. Rats were grouped into control, BPA-treated rats, and taurine + BPA-treated rats. At the end of the 35-day treatment period, the memory of the rats was evaluated using the novel object test and the Y-maze test.

View Article and Find Full Text PDF

Di(2-ethylhexyl) phthalate (DEHP) is a widespread ubiquitous phthalate environmental contaminant. The male reproductive toxicity (MRT) from exposure to DEHP and its main metabolite, mono(2-ethylhexyl) phthalate (MEHP), has been well documented. Fully elucidating its toxic mechanism and discovering effective antagonists are desirable means to reduce the health risks of DEHP.

View Article and Find Full Text PDF

Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear.

View Article and Find Full Text PDF

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Taurine prevents mitochondrial dysfunction and protects mitochondria from reactive oxygen species and deuterium toxicity.

Amino Acids

January 2025

Laboratory of Molecular Biology and Immunology, Department of Pharmacy, University of Patras, 26500, Rio-Patras, Greece.

Taurine, although not a coding amino acid, is the most common free amino acid in the body. Taurine has multiple and complex functions in protecting mitochondria against oxidative-nitrosative stress. In this comprehensive review paper, we introduce a novel potential role for taurine in protecting from deuterium (heavy hydrogen) toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!