Talaromyces pinophilus is a promising filamentous fungus for industrial production of biomass-degrading enzymes used in biorefining, and its genome was recently sequenced and reported. However, functional analysis of genes in T. pinophilus is rather limited owing to lack of genetic tools. In this study, a putative TpKu70 encoding the Ku70 homolog involved in the classic non-homologous end-joining pathway was deleted in T. pinophilus 1-95. ΔTpKu70 displayed no apparent defect in vegetative growth and enzyme production, and presented similar sensitivity to benomyl, bleomycin, and UV, when compared with the wild-type T. pinophilus strain 1-95. Seven genes that encode putative transcription factors, including TpAmyR, were successfully knocked out in ΔTpKu70 at 61.5-100% of homologous recombination frequency, which is significantly higher than that noted in the wild-type. Interestingly, ΔTpAmyR produced approximately 20% of amylase secreted by the parent strain ΔTpKu70 in medium containing soluble starch from corn as the sole carbon source. Real-time quantitative reverse transcription PCR showed that TpAmyR positively regulated the expression of genes encoding α-amylase and glucoamylase. Thus, this study provides a useful tool for genetic analysis of T. pinophilus, and identification of a key role for the transcription factor TpAmyR in amylase production in T. pinophilus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-017-2331-5 | DOI Listing |
Fungal Biol
February 2025
Department of Animal Biology, Faculty of Natural Sciences University of Tabriz, Tabriz, Iran; Microbial Biotechnology Research Group, Faculty of Natural Sciences University of Tabriz, Tabriz, Iran. Electronic address:
Benzene, toluene, ethylbenzene, and xylene (BTEX) exposure is known to be carcinogenic and neurotoxic chemicals to humans. This study investigates the potential of fungal native strains for the bioremediation of BTEX compounds. Fungal isolates were obtained from BTEX-enriched soil, and their ability to degrade these pollutants was evaluated.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2024
College of Natural Resources and Environment, Northwest A&F University/Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China.
Inoculating zinc solubilizing microorganisms (ZSMs) is considered as a promising strategy for increasing Zn phytoavailability in soils with low Zn availability. In present study, we screened six strains of ZSMs from rhizosphere of green manure crop, including three strains of fungi, , and three strains of bacteria, . We conducted a pot experiment of Bok choy inoculated with different ZSMs to analyze the Zn content in shoots and roots, and compared the Zn solubilizing effect of ZSMs.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban 4000, South Africa. Electronic address:
Two indigenous fungal strains, Trichoderma lixii FLU1 (TlFLU1) and Talaromyces pinophilus FLU12 (TpFLU12) showed potential to biodegrade anthracene. Response Surface Methodology (RSM) employing Box-Behnken Design (BBD) and Central Composite Design (CCD) methods optimized crucial physicochemical parameters like pH, temperature, biomass, substrate concentration and media composition. BBD maximized anthracene biodegradation efficiency by predicting 98.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Key Laboratory of Archaeomaterials and Conservation, Ministry of Education, University of Science and Technology Beijing, Beijing 100083, China.
The Dingtao M2 tomb, the largest and best-preserved imperial "Huangchangticou" tomb in China, holds great significance for its conservation. Currently, varying degrees of microbial degradation are occurring on the surfaces of the M2 tomb. This study aimed to determine the microbial diversity of the M2 tomb and its surrounding environment during July 2021 and August 2022.
View Article and Find Full Text PDFJ Fungi (Basel)
November 2024
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
This study was conducted in order to explore the pathogens that cause stem rot of fresh onions during postharvest storage, identify the incidence of stem rot, investigate the influence of pathogen infection on the active components of onion, and provide a theoretical basis for disease control during the postharvest storage of fresh onions. The pathogens were isolated and purified from the junction between the rotten and healthy tissues of onion stem rot that occurred naturally during storage at room temperature by tissue separation; then, the pathogens were identified by morphological and molecular biological techniques, the biological characteristics of the pathogens were analyzed, and finally, the influence of pathogen infection on the active ingredients of onion was studied. The results suggested that the main pathogens causing stem rot of fresh onions during postharvest storage were , and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!