A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Effect of Histamine on Inward and Outward Currents in Mouse Retinal Amacrine Cells. | LitMetric

The Effect of Histamine on Inward and Outward Currents in Mouse Retinal Amacrine Cells.

Cell Mol Neurobiol

Department of Physiology, School of Medicine, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.

Published: April 2018

AI Article Synopsis

  • H1 receptor is expressed in amacrine cells of the mouse and rat retina, suggesting that other histamine receptors may also be involved.
  • Histamine significantly enhances voltage-gated outward and inward currents in a majority of amacrine cells, indicating its role in modulating membrane potential.
  • The study identifies seven types of amacrine cells, with specific responses to histamine varying among these types, suggesting its potential importance in visual processing.

Article Abstract

The expression of H1 receptor has been reported in amacrine cells of mouse and rat retinae. However, we assumed that other types of histamine receptors also function in amacrine cells. In order to confirm that histamine modulates the membrane potential in mouse amacrine cells, we measured voltage-gated currents using whole-cell configuration. Under voltage-clamp conditions, the amplitude of voltage-gated outward currents was enhanced by the application of 100 µM histamine in 65% of amacrine cells. Histamine also increased the amplitudes of voltage-gated inward currents in 72% of amacrine cells. When antagonists of the histamine H1, H2, or H3 receptors were applied to histamine-sensitive amacrine cells, all three types of these inhibitors reduced the effect of histamine. Moreover, we classified recorded cells into seven types based on their morphological characteristics. Two of the seven types, diffuse multistratified cells and AII amacrine cells, responded significantly to histamine. These results indicate that histamine affected the membrane potential via three types of histamine receptors. Furthermore, there were differences in the responses to histamine among types of amacrine cells. Histamine may be one of the important neurotransmitters and/or neuromodulators in the visual processing.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-017-0542-9DOI Listing

Publication Analysis

Top Keywords

amacrine cells
36
histamine
12
histamine receptors
12
cells
11
amacrine
9
outward currents
8
types histamine
8
membrane potential
8
voltage-gated currents
8
cells histamine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!