Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF‑κB, ICAM-1, MMP-9 and caspase-3 expression.

Mol Med Rep

Center of Excellence for Microcirculation, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand.

Published: October 2017

Reperfusion is the only approved therapy for acute ischemic stroke; however, it can cause excessive inflammation responses and aggravate brain damage. Therefore, supplementary treatment against inflammation caused by reperfusion is required. In a previous study from our group, curcumin was demonstrated to decrease infarction volume, brain edema and blood‑brain barrier (BBB) disruption against cerebral ischemia/reperfusion (I/R) injury. However, the underlying mechanisms remain unclear. The present study was conducted to understand whether curcumin protects against cerebral I/R injury through anti‑inflammatory and antiapoptotic properties. Ischemia for 1 h was induced in vivo in Wistar rats by middle cerebral artery occlusion (MCAO), followed by reperfusion for 24 h, and curcumin was injected intraperitoneally at 30 min prior to reperfusion. Immunohistochemistry was performed to analyze the expression levels of nuclear factor (NF)‑κB, intercellular adhesion molecule (ICAM)‑1, matrix metalloproteinase (MMP)‑9 and caspase‑3. The findings revealed that inflammation (NF‑κB, ICAM‑1 and MMP‑9) and apoptosis (caspase‑3)‑related markers were significantly downregulated in the curcumin‑treated MCAO group compared with the vehicle‑treated MCAO group. Furthermore, brain infarction size, brain edema and neurological dysfunction were attenuated in the curcumin‑treated MCAO group compared with the vehicle‑treated MCAO group. Taken together, the present results provided evidence that the protective effect of curcumin against cerebral I/R injury might be mediated by anti‑inflammatory and anti‑apoptotic properties. Therefore, curcumin may be a promising supplementary agent against cerebral I/R injury in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5647023PMC
http://dx.doi.org/10.3892/mmr.2017.7205DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
mcao group
16
cerebral i/r
12
ischemic stroke
8
brain edema
8
curcumin‑treated mcao
8
group compared
8
compared vehicle‑treated
8
vehicle‑treated mcao
8
curcumin
6

Similar Publications

Testicular ischemia-reperfusion (I/R) injury during testicular torsion is strongly influenced by oxidative stress caused by excessive accumulation of unscavenged reactive oxygen species. This study aimed to investigate the effects of intra-peritoneal administration of Mito-TEMPO (MT) on I/R injury in testicular torsion/detorsion (T/D) in mice. Forty-two male mice were divided into seven groups including 1 control and 6 treatment groups (360° T/D, 720° T/D, 360° T/D + 0.

View Article and Find Full Text PDF

Cerebral ischemia-reperfusion (I/R) is a serious complication in patients with ischemic stroke. Senkyunolide A (SenA) can alleviate neuronal cell damage induced by cerebral I/R; however, the exact action mechanism remains unclear. An in vitro cellular injury model was established by inducing PC-12 cells with OGD/R.

View Article and Find Full Text PDF

Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.

Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.

View Article and Find Full Text PDF

Fracture Prevention with Infrequent Zoledronate in Women 50 to 60 Years of Age.

N Engl J Med

January 2025

From the Department of Medicine, University of Auckland, Auckland, New Zealand (M.J.B., Z.N., A.M., C.G., V.P., B.M., A.G., I.R.R., G.G., A.H.); the Department of Psychology, Stanford University, Stanford, CA (C.G.); and the Department of Radiology, Starship Hospital, Auckland, New Zealand (S.B.).

Background: Zoledronate prevents fractures in older women when administered every 12 to 18 months, but its effects on bone density and bone turnover persist beyond 5 years. Whether infrequent zoledronate administration would prevent vertebral fractures in early postmenopausal women is unknown.

Methods: We conducted a 10-year, prospective, double-blind, randomized, placebo-controlled trial involving early postmenopausal women (50 to 60 years of age) with bone mineral density T scores lower than 0 and higher than -2.

View Article and Find Full Text PDF

Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!