The pathogenic role of mesenchymal stromal cells (MSCs) in myelodysplastic syndromes (MDS) development and progression has been investigated by numerous studies, yet, it remains controversial in some aspects (1, 2). In the present study, we found distinct features of MSCs from low-risk (LR)-MDS stromal microenvironment as compared to those from healthy subjects. At the molecular level, focal adhesion kinase, a key tyrosine kinase in control of cell proliferation, survival, and adhesion process, was found profoundly suppressed in expression and activation in LR-MDS MSC. At a functional level, LR-MDS MSCs showed impaired growth and clonogenic capacity, which were independent of cellular senescence and apoptosis. The pro-adipogenic differentiation and attenuated osteogenic capacity along with reduced SDF-1 expression could be involved in creating an unfavorable microenvironment for hematopoiesis. In conclusion, our experiments support the theory that the stromal microenvironment is fundamentally altered in LR-MDS, and these preliminary data offer a new perspective on LR-MDS pathophysiology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5551509PMC
http://dx.doi.org/10.3389/fonc.2017.00164DOI Listing

Publication Analysis

Top Keywords

focal adhesion
8
adhesion kinase
8
mesenchymal stromal
8
stromal cells
8
stromal microenvironment
8
lr-mds
5
impaired expression
4
expression focal
4
kinase mesenchymal
4
stromal
4

Similar Publications

A mechanosensitive circuit of FAK, ROCK, and ERK controls biomineral growth and morphology in the sea urchin embryo.

Proc Natl Acad Sci U S A

January 2025

Department of Marine Biology, Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.

Biomineralization is the utilization of different minerals by a vast array of organisms to form hard tissues and shape them in various forms. Within this diversity, a common feature of all mineralized tissues is their high stiffness, implying that mechanosensing could be commonly used in biomineralization. Yet, the role of mechanosensing in biomineralization is far from clear.

View Article and Find Full Text PDF

Plasma secretory proteins are associated with various diseases, including aortic dissection (AD). However, current research on the correlation between AD and plasma protein levels is scarce or lacks specificity. This study aimed to explore plasma secretory proteins as potential biomarkers for AD.

View Article and Find Full Text PDF

The quantity of cable conductors is a crucial parameter in cable manufacturing, and accurately detecting the number of conductors can effectively promote the digital transformation of the cable manufacturing industry. Challenges such as high density, adhesion, and knife mark interference in cable conductor images make intelligent detection of conductor quantity particularly difficult. To address these challenges, this study proposes the YOLO-cable model, which is an improvement made upon the YOLOv10 model.

View Article and Find Full Text PDF

Objective: Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal hepatobiliary malignancy with an increasing incidence annually. Extensive research has elucidated the existence of a reciprocal interaction between platelets and cancer cells, which promotes tumor proliferation and metastasis. This study aims to investigate the function and mechanism underlying iCCA progression driven by the interplay between platelets and tumor cells, aiming to provide novel therapeutic strategies for iCCA.

View Article and Find Full Text PDF

LncRNA MALAT1 as a potential diagnostic and therapeutic target in kidney diseases.

Pathol Res Pract

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India. Electronic address:

Long non-coding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript1 (MALAT1) has emerged as a crucial biomarker and therapeutic target for kidney diseases, including acute kidney injury (AKI), chronic kidney disease (CKD), diabetic kidney disease (DKD), lupus nephritis (LN), and renal cell carcinoma (RCC). LncRNAs are non-coding RNAs that have more than 200 nucleotides that play a crucial role in gene regulation at the post-translational stage, transcriptional, and epigenetic levels. LncRNA MALAT1 regulates gene expression and modulates cellular functions such as proliferation, inflammation, apoptosis, and fibrosis, which are key pathophysiology of kidney diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!