A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Snail Enhances Glycolysis in the Epithelial-Mesenchymal Transition Process by Targeting FBP1 in Gastric Cancer. | LitMetric

Snail Enhances Glycolysis in the Epithelial-Mesenchymal Transition Process by Targeting FBP1 in Gastric Cancer.

Cell Physiol Biochem

Department of Oncology, Clinical Medical College of Yangzhou University, Subei People's Hospital of Jiangsu Province, Yangzhou, China.

Published: November 2017

Background: Snail is a key regulator of epithelial-mesenchymal transition (EMT) in cancer. However, the regulatory role and underlying mechanisms of Snail in gastric cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by Snail in gastric cancer.

Methods: The impact of Snail on glucose metabolism was studied in vitro. Combining maximum standardized uptake value (SUVmax), which was obtained preoperatively via a PET/CT scan, with immunohistochemistry staining, we further analyzed the correlation between SUVmax and Snail expression in gastric cancer tissues.

Results: Increased expression of Snail promoted lactate production, glucose utilization, and decreased FBP1 expression at both mRNA and protein level. The expression level of Snail was positively associated with SUVmax in gastric cancer patients (P=0.022). Snail and FBP1 expression were inversely correlated at both mRNA and protein level (P=0.002 and P=0.015 respectively) in gastric cancer tissues. Further studies demonstrated that Snail inhibited the FBP1 gene expression at the transcriptional level. Restoring FBP1 expression reversed the effects of glycolysis and EMT induced by Snail in gastric cancer cells.

Conclusions: Our results thus reveal that Snail serves as a positive regulator of glucose metabolism through regulation of the FBP1 in gastric cancer. Disrupting the Snail-FBP1 signaling axis may be effective to prevent primary tumor EMT and glycolysis process.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000480314DOI Listing

Publication Analysis

Top Keywords

gastric cancer
28
snail
12
snail gastric
12
fbp1 expression
12
epithelial-mesenchymal transition
8
gastric
8
fbp1 gastric
8
cancer
8
glucose metabolism
8
mrna protein
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!