Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Snail is a key regulator of epithelial-mesenchymal transition (EMT) in cancer. However, the regulatory role and underlying mechanisms of Snail in gastric cancer metabolism are unknown. In this study, we characterized the regulation of aerobic glycolysis by Snail in gastric cancer.
Methods: The impact of Snail on glucose metabolism was studied in vitro. Combining maximum standardized uptake value (SUVmax), which was obtained preoperatively via a PET/CT scan, with immunohistochemistry staining, we further analyzed the correlation between SUVmax and Snail expression in gastric cancer tissues.
Results: Increased expression of Snail promoted lactate production, glucose utilization, and decreased FBP1 expression at both mRNA and protein level. The expression level of Snail was positively associated with SUVmax in gastric cancer patients (P=0.022). Snail and FBP1 expression were inversely correlated at both mRNA and protein level (P=0.002 and P=0.015 respectively) in gastric cancer tissues. Further studies demonstrated that Snail inhibited the FBP1 gene expression at the transcriptional level. Restoring FBP1 expression reversed the effects of glycolysis and EMT induced by Snail in gastric cancer cells.
Conclusions: Our results thus reveal that Snail serves as a positive regulator of glucose metabolism through regulation of the FBP1 in gastric cancer. Disrupting the Snail-FBP1 signaling axis may be effective to prevent primary tumor EMT and glycolysis process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000480314 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!