Caloric Restriction Prevents Carcinogen-Initiated Liver Tumorigenesis in Mice.

Cancer Prev Res (Phila)

Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota.

Published: November 2017

Caloric restriction (CR) and endurance exercise elicit wide-ranging health benefits including reduced risk of select cancers. In addition, diet composition influences oncogenesis, although its interactions with exercise and CR are not well understood. Therefore, to investigate the potential interactions between diet and lifestyle interventions on liver tumorigenesis, the carcinogen diethylnitrosamine was administered to 72 male C57Bl/6 mice that were subsequently fed diets enriched with lard (CTL) or olive oil and were further stratified to voluntary wheel running (Ex) or 30% CR for 49 weeks. Although Ex and diet composition did not influence liver oncogenesis, CR prevented hepatic tumor formation. In addition, CR reduced steatosis, hepatocyte ballooning, inflammation, and immune cell infiltration, all of which are hallmarks in the progression of nonalcoholic fatty liver disease to liver tumorigenesis. RNA sequencing of nontransformed liver tissues from CR mice revealed changes in metabolic pathways and reduced inflammation, cytokine production, stellate cell activation and migration, and genes associated with liver injury and oncogenesis. These data demonstrate that CR protects against steatosis, liver inflammation, and liver injury and is a robust deterrent of carcinogen-induced hepatic oncogenesis. .

Download full-text PDF

Source
http://dx.doi.org/10.1158/1940-6207.CAPR-17-0174DOI Listing

Publication Analysis

Top Keywords

liver tumorigenesis
12
liver
9
caloric restriction
8
diet composition
8
liver injury
8
restriction prevents
4
prevents carcinogen-initiated
4
carcinogen-initiated liver
4
tumorigenesis mice
4
mice caloric
4

Similar Publications

The CDKN2A gene, responsible for encoding the tumor suppressors p16(INK4A) and p14(ARF), is frequently inactivated in non-small cell lung cancer (NSCLC). Herein, an uncharacterized long non-coding RNA (lncRNA) (ENSG00000267053) on chromosome 19p13.12 was found to be overexpressed in NSCLC cells with an active, wild-type CDKN2A gene.

View Article and Find Full Text PDF

Intestinal epithelial cell NCoR deficiency ameliorates obesity and metabolic syndrome.

Acta Pharm Sin B

December 2024

State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.

Nuclear receptor corepressor (NCoR1) interacts with various nuclear receptors and regulates the anabolism and catabolism of lipids. An imbalance in lipid/energy homeostasis is also an important factor in obesity and metabolic syndrome development. In this study, we found that the deletion of NCoR1 in intestinal epithelial cells (IECs) mainly activated the nuclear receptor PPAR and attenuated metabolic syndrome by stimulating thermogenesis.

View Article and Find Full Text PDF

Tumor-promoting inflammation significantly impacts cancer progression, and targeting inflammatory cytokines has emerged as a promising therapeutic approach in clinical trials. Interleukin (IL)-1α, a member of the IL-1 cytokine family, plays a crucial role in both inflammation and carcinogenesis. How IL-1α is secreted in the tumor microenvironment has been poorly understood, and we previously showed that calpain 1 cleaves pro-IL-1α for mature IL-1α secretion, which exacerbates hepatocellular carcinoma by recruiting myeloid-derived suppressor cells.

View Article and Find Full Text PDF

Circular RNAs (circRNAs), covalently closed single-stranded RNAs, have been implicated in cancer progression. A previous investigation revealed that circ-ZEB1 is expressed abnormally in liver cancer. However, the roles of circ-ZEB1 in non-small cell lung cancer (NSCLC) are unknown.

View Article and Find Full Text PDF

HBx Facilitates Drug Resistance in Hepatocellular Carcinoma via CD133-regulated Self-renewal of Liver Cancer Stem Cells.

J Clin Transl Hepatol

January 2025

Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Background And Aims: Hepatitis B virus (HBV) infection contributes to hepatocellular carcinoma (HCC) tumorigenesis, drug resistance, and recurrence, although the underlying molecular mechanisms remain unclear. Recent studies suggest that HBV infection may be associated with liver cancer stem cells (LCSCs), but the exact mechanisms are yet to be resolved. In this study, we aimed to analyze the role of HBV infection in regulating the stemness of HCCs, which is closely linked to drug resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!