The response to a DNA double-stranded break in mammalian cells is a process of sensing and signalling the lesion. It results in halting the cell cycle and local transcription and in the mediation of the DNA repair process itself. The response is launched through a series of post-translational modification signalling events coordinated by phosphorylation and ubiquitination. More recently modifications of proteins by mall biquitin-like difier (SUMO) isoforms have also been found to be key to coordination of the response (Morris 2009 , 886-890 (doi:10.1038/nature08593); Galanty 2009 , 935-939 (doi:10.1038/nature08657)). However our understanding of the role of SUMOylation is slight compared with our growing knowledge of how ubiquitin drives signal amplification and key chromatin interactions. In this review we consider our current knowledge of how SUMO isoforms, SUMO conjugation machinery, SUMO proteases and SUMO-interacting proteins contribute to directing altered chromatin states and to repair-protein kinetics at a double-stranded DNA lesion in mammalian cells. We also consider the gaps in our understanding.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5577459 | PMC |
http://dx.doi.org/10.1098/rstb.2016.0281 | DOI Listing |
J Nat Prod
January 2025
Department of Chemistry, Federal University of Piaui, Campus Ministro Petrônio Portela, Teresina, PI 64049-550, Brazil.
With praziquantel being the sole available drug for schistosomiasis, identifying novel anthelmintic agents is imperative. A chemical investigation of the fruiting body of the bioluminescent mushroom Berk. resulted in the isolation of new conjugated long-chain fatty acids (8,10,12,13)-12,13-dihydroxy-7-oxo-octadeca-8,10-dienoic acid () and (7,8,9,11)-7,8-dihydroxy-13-oxo-octadeca-9,11-dienoic acid () and three previously described compounds, (7,8,9)-7,8-dihydroxyoctadec-9-enoic acid (), (2)-dec-2-ene-1,10-dioic acid (), and a ketolactone marasmeno-1,15-dione ().
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Preventive Medicine, Medical school, Hunan Normal University, Changsha, Hunan 410013, China.
Humans may intake 0.02 mg/kg/day of short-chain chlorinated paraffins (SCCPs), and no study is available on mammalian ovarian damage caused by low-level SCCPs. In this study, four groups of 5-week-old female Institute of Cancer Research (ICR) mice were orally administered 0, 0.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Laboratory of Virology and Cellular Technology, Department of Chemistry, Biotechnology, and Bioprocess Engineering, Universidade Federal de São João del-Rei, Ouro Branco, MG, Brazil.
Background: , a notable plant species, has garnered interest for its medicinal properties, including anti-inflammatory, antibacterial and antiviral effects. A vaccine for Chikungunia virus is still under evaluation and no specific antiviral drug has been licensed to date.
Objective: The work investigated antiviral activity of ethyl acetate (EAEF) and methanolic (EMF) extracts from leaves in mammalian cells exposed to (CHIKV).
Adv Sci (Weinh)
January 2025
Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Biomedical Engineering Program, Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R2H2A6, Canada.
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands.
The cytoskeleton is a crucial determinant of mammalian cell structure and function, providing mechanical resilience, supporting the cell membrane and orchestrating essential processes such as cell division and motility. Because of its fundamental role in living cells, developing a reconstituted or artificial cytoskeleton is of major interest. Here we present an approach to construct an artificial cytoskeleton that imparts mechanical support and regulates membrane dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!