Testis-specific protein, Y-encoded, 1 (TSPY1) is involved in the regulation of spermatogenic efficiency via highly variable copy dosage, with dosage deficiency of the multicopy gene conferring an increased risk of spermatogenic failure. TSPY-like 1 (TSPYL1) and TSPY-like 5 (TSPYL5), two autosomal homologous genes originating from TSPY1, share a core sequence that encodes a functional nucleosome assembly protein (NAP) domain with TSPY1. To explore the potential effects of TSPYL1 and TSPYL5 on the TSPY1-related spermatogenic phenotype, we investigated the expression of these genes in 15 healthy and nonpathological human tissues (brain, kidney, liver, pancreas, thymus, prostate, spleen, muscle, leucocytes, placenta, intestine, ovary, lung, colon and testis) and explored associations between their variations and spermatogenic failure in 1558 Han Chinese men with different spermatogenic conditions, including 304 men with TSPY1 dosage deficiency. TSPYL1 and TSPYL5 were expressed in many different tissues, including the testis. An unreported rare variant that is likely pathogenic (c.1057A>G, p.Thr353Ala) and another of uncertain significance (c.1258C>T, p.Arg420Cys) in the NAP-coding sequence of TSPYL1 were observed in three spermatogenesis-impaired patients with heterozygous status. The distribution differences in the alleles, genotypes and haplotypes of eight TSPYL1- and TSPYL5-linked common variants did not reach statistical significance in comparisons of patients with spermatogenic failure and controls with normozoospermia. No difference in sperm production was observed among men with different genotypes of the variants. Similar results were obtained in men with TSPY1 dosage deficiencies. Although the distribution of missense variants of TSPYL1 found in the present and other studies suggests that patients with spermatogenic failure may have a statistically significant greater burden of rare variations in TSPYL1 relative to normozoospermic controls, the functional evidence suggests that TSPYL1 contributes to impaired spermatogenesis. Moreover, the present study suggests that the effects of TSPYL1 and TSPYL5 on the spermatogenic phenotype of TSPY1 dosage deficiency are limited, which may be due to the stability of their function resulting from high sequence conservation.

Download full-text PDF

Source
http://dx.doi.org/10.1071/RD17146DOI Listing

Publication Analysis

Top Keywords

tspy1 dosage
16
dosage deficiency
16
spermatogenic failure
16
spermatogenic phenotype
12
tspyl1 tspyl5
12
spermatogenic
9
tspyl1
9
testis-specific protein
8
protein y-encoded
8
y-encoded tspy1
8

Similar Publications

Testis-specific protein, Y-encoded, 1 (TSPY1) is involved in the regulation of spermatogenic efficiency via highly variable copy dosage, with dosage deficiency of the multicopy gene conferring an increased risk of spermatogenic failure. TSPY-like 1 (TSPYL1) and TSPY-like 5 (TSPYL5), two autosomal homologous genes originating from TSPY1, share a core sequence that encodes a functional nucleosome assembly protein (NAP) domain with TSPY1. To explore the potential effects of TSPYL1 and TSPYL5 on the TSPY1-related spermatogenic phenotype, we investigated the expression of these genes in 15 healthy and nonpathological human tissues (brain, kidney, liver, pancreas, thymus, prostate, spleen, muscle, leucocytes, placenta, intestine, ovary, lung, colon and testis) and explored associations between their variations and spermatogenic failure in 1558 Han Chinese men with different spermatogenic conditions, including 304 men with TSPY1 dosage deficiency.

View Article and Find Full Text PDF

Since the available concentration of single-copy fetal genes in maternal blood DNA is sometimes lower than detection limits by PCR methods, the development of specific and quantitative PCR detection methods for fetal DNA in maternal blood is anticipated, which may broaden the methods that can be used to monitor pregnancy. We used the TaqMan qPCR amplification for DYS14 multi-copy sequence and the SRY gene in maternal blood plasma (cell-free DNA) and fractional precipitated blood cells (cellular DNA) from individual cynomolgus monkeys at 22 weeks of pregnancy. The availability of cell-free fetal DNA was higher in maternal blood plasma than that of cellular DNA from fractional precipitated blood cells.

View Article and Find Full Text PDF

[Research progress of TSPY1 gene family].

Zhonghua Yi Xue Yi Chuan Xue Za Zhi

October 2014

Department of Medical Genetics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R.China.

TSPY1 (testis-specific protein, Y-linked 1) gene family, located in male-specific region of Y-chromosome (MSY), has the maximum number of copies organized as a long tandem repeat array in protein-coding gene families of human genome. TSPY1 is identified to be the most important candidate gene for gonadoblastoma, and its coding protein can promote the proliferation and differentiation of tumor cells. Recently, TSPY1 gene family is also proposed to play an important role in spermatogenesis.

View Article and Find Full Text PDF

Background: Minisatellites are an integral part of eukaryotic genomes and show variation in the complexity of their organization. Besides their presence in non-coding regions, a small fraction of them are part of the transcriptome, possibly participating in gene regulation, expression and silencing. We studied the minisatellite (TGG)(n) tagged transcriptome in the water buffalo Bubalus bubalis across various tissues and the spermatozoa, and characterized the genes TSPY1 and COL6A1 discovered in the process.

View Article and Find Full Text PDF

The Y chromosome-linked copy number variations and male fertility.

J Endocrinol Invest

May 2011

Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence 50139, Italy.

Since the first definition of the AZoospermia Factor (AZF) regions, the Y chromosome has become an important target for studies aimed to identify genetic factors involved in male infertility. This chromosome is enriched with genes expressed exclusively or prevalently in the testis and their absence or reduction of their dosage is associated with spermatogenic impairment. Due to its peculiar structure, full of repeated homologous sequences, the Y chromosome is predisposed to structural rearrangements, especially deletions/ duplications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!