Antioxidants have the potential to prevent cerebral ischemia-reperfusion (IR)-associated secondary damage induced by reactive oxygen species (ROS); however, the short therapeutic time window of IR is a considerable obstacle. Nano-sized nasal delivery systems provide an effective means of delivering drugs through the BBB, but few such systems have been developed to extend the treatment time window in IR. In this work, a nanosized nasal delivery system for antioxidants was found to have the potential to extend the neuroprotective time window. The authors chose to use the antioxidant C-phycocyanin (C-Pc) to design a neuroprotective liposome with a long life, controllable release, and high neuronal uptake rate. Liposomes formulated with various cholesterol to phospholipid ratios were assessed thermodynamically, kinetically, and biologically. Thermodynamically stable, monodispersive, and release-controllable C-Pc liposomes were more effectively taken up by Neuro2a cells than free C-Pc and were biocompatible, maintaining the anti-oxidative properties of C-Pc. When optimal C-Pc liposomes were administered to middle cerebral artery occlusion (MCAO) rats 2 h after onset, infarct sizes were smaller and behavioral activities improved compared with the same metrics in free C-Pc-treated rats. Liposomal delivery still reduced infarct sizes and improved behavioral activity 6 h after onset, whereas free C-Pc did not.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1381612823666170825124515 | DOI Listing |
Psychol Rev
January 2025
Department of Experimental Psychology, University of Groningen.
Time is a central dimension against which perception, action, and cognition play out. From anticipating when future events will happen to recalling how long ago previous events occurred, humans and animals are exquisitely sensitive to temporal structure. Empirical evidence seems to suggest that estimating time prospectively (i.
View Article and Find Full Text PDFCurr Res Neurobiol
June 2025
Neuroscience Program, Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, VIC, 3800, Australia.
Lesions of the primary visual cortex (V1) cause retrograde neuronal degeneration, volume loss and neurochemical changes in the lateral geniculate nucleus (LGN). Here we characterised the timeline of these processes in adult marmoset monkeys, after various recovery times following unilateral V1 lesions. Observations in NeuN-stained sections obtained from animals with short recovery times (2, 3 or 14 days) showed that the volume and neuronal density in the LGN ipsilateral to the lesions were similar to those in the contralateral hemispheres.
View Article and Find Full Text PDFNPJ Biol Phys Mech
December 2024
Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus.
Solid tumors harbor a complex and dynamic microenvironment that hinders the delivery and efficacy of therapeutic interventions. In this study, we developed and utilized a hybrid, discrete-continuous mathematical model to explore the interplay between solid tumor growth, immune response, tumor-induced angiogenesis, and antiangiogenic drugs. By integrating published data with anti-angiogenic drugs, we elucidate three primary mechanisms by which anti-angiogenesis influences tumor progression and treatment outcomes: reduction in tumor growth rate by mitigating and temporally delaying angiogenesis, normalization of blood vessel structure and function, and improving immune cell extravasation and activation.
View Article and Find Full Text PDFPhys Imaging Radiat Oncol
October 2024
Department of Oncology, Laboratory of Experimental Radiotherapy, KU Leuven, Belgium.
Background And Purpose: With the increasing amount of in-house created deep learning models in radiotherapy, it is important to know how to minimise the risks associated with the local clinical implementation prior to clinical use. The goal of this study is to give an example of how to identify the risks and find mitigation strategies to reduce these risks in an implemented workflow containing a deep learning based planning tool for breast Volumetric Modulated Arc Therapy.
Materials And Methods: The deep learning model ran on a private Google Cloud environment for adequate computational capacity and was integrated into a workflow that could be initiated within the clinical Treatment Planning System (TPS).
iScience
December 2024
Laboratory of Translational Obesity Research, New York University Langone Health, New York, NY 10016, USA.
Early time-restricted eating (eTRE) is a dietary strategy that restricts caloric intake to the first 6-8 h of the day and can effect metabolic benefits independent of weight loss. However, the extent of these benefits is unknown. We conducted a randomized crossover feeding study to investigate the weight-independent effects of eTRE on glycemic variation, multiple time-in-range metrics, and levels of inflammatory markers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!