Chitosan microencapsulation of the dispersed phase of an O/W nanoemulsion to hydrochlorothiazide delivery.

J Microencapsul

a Post-graduation Program in Pharmaceutical Sciences, Quality Control Laboratory , Universidade Federal de Santa Catarina , Florianópolis , Brazil.

Published: November 2017

In view of biopharmaceutical limitations of hydrochlorothiazide (HCTZ), Trojan-type mucoadhesive systems were proposed, aiming to improve HCTZ pharmacological properties by modulating its release. Nanoemulsions were formed spontaneously by combining medium-chain triglycerides (Lipoid S75 and Pluronic F68) and high encapsulation efficiency was obtained. The mucoadhesive properties were provided by chitosan and microencapsulation of nanoemulsions in spray-dryer was successfully achieved by using Aerosil as wall material. The rapid redispersion of nanoemulsion in simulated fluids led to a fast and complete release of HCTZ in gastric medium. The pharmacodynamics of HCTZ was improved, extending the diuretic activity. Once a simple and low-energy method contributed to obtain stable mucoadhesive nanoemulsions, advantages in terms of production could also be achieved, allowing easy scaling up. This novel mucoadhesive Trojan particulate system of HCTZ showed to be a promising approach to overcome limitations in terms of absorption and consequently improve the therapeutic efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1080/02652048.2017.1373155DOI Listing

Publication Analysis

Top Keywords

chitosan microencapsulation
8
hctz
5
microencapsulation dispersed
4
dispersed phase
4
phase o/w
4
o/w nanoemulsion
4
nanoemulsion hydrochlorothiazide
4
hydrochlorothiazide delivery
4
delivery view
4
view biopharmaceutical
4

Similar Publications

This review paper analyzes recent advancements in bio-polymer coatings for probiotic microencapsulation, with a particular emphasis on chitosan and its synergistic combinations with other materials. Probiotic microencapsulation is essential for protecting probiotics from environmental stresses, enhancing their stability, and ensuring effective delivery to the gut. The review begins with an overview of probiotic microencapsulation, highlighting its significance in safeguarding probiotics through processing, storage, and gastrointestinal transit.

View Article and Find Full Text PDF

: (B) A. Gray, a plant native to northwest Mexico, has long been utilized in traditional medicine for its anti-inflammatory effects. Previous studies have highlighted the bioactivity of fruit extract.

View Article and Find Full Text PDF

Influence of the addition of gum arabic and xanthan gum in the preparation of sodium alginate microcapsules coated with chitosan hydrochloride on the survival of Lacticaseibacillus rhamnosus GG.

Int J Biol Macromol

December 2024

Federal University of Pernambuco (UFPE), Av. Profª Morais Rego, 1235, University City, 50670-901 Recife, Brazil; Keizo Asami Institute (iLIKA), Av. Prof. Morais Rego, 1235, University City, 50670-901 Recife, Brazil. Electronic address:

The microencapsulation of Lactocaseibacillus rhamnosus GG in a matrix of sodium alginate, xanthan gum, gum arabic and chitosan hydrochloride is a promising strategy for protecting this probiotic during passage through the gastrointestinal tract. This study evaluated the influence on the viability of Lactocaseibacillus rhamnosus GG encapsulated with these polymers by external ionic gelation with vibratory extrusion and the microcapsules that showed the best results of capsulation efficiency, viability, size and morphology were analyzed by Fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and exposure to environmental stress conditions and gastrointestinal simulation. The result revealed encapsulation efficiency values above 95 % for all formulations and survival rate higher than 6 log CFU/mL for most analyzed groups.

View Article and Find Full Text PDF

Enhancing the stability of krill oil through microencapsulation with endogenous krill protein and chitosan and application in senior milk powder.

Int J Biol Macromol

December 2024

Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou 510642, Guangdong, China. Electronic address:

Krill oil (KO) exhibits several biological actions, particularly providing distinct advantages for cognitive health in the aged. Nonetheless, its inadequate water solubility, pronounced flavor, and vulnerability to oxidative degradation restrict its utilization in the food sector. Encapsulation provides a solution, and the study of natural, suitable wall materials is crucial.

View Article and Find Full Text PDF

Dual cross-linking with tannic acid and transglutaminase improves microcapsule stability and encapsulates lemon essential oil for food preservation.

Food Chem

February 2025

College of Pharmacy, Jiamusi University, Jiamusi, Heilongjiang 154007, PR China; Heilongjiang Provincial Key Laboratory of New Drug Development and Pharmacotoxicological Evaluation, Jiamusi University, Jiamusi 154007, PR China. Electronic address:

The microencapsulation of essential oils by complex coacervation technology has attracted considerable attention. This paper deals with the preparation of gelatin-chitosan microcapsules through dual cross-linking using transglutaminase (TGase) and tannic acid (TA). Lemon essential oil (LEO) was successfully encapsulated with 82.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!