A highly sensitive and robust method was developed for routine analysis of two progestin metabolites, 17α-hydroxypregnanolone (17OH-Δ5P) and pregnanediol (PD), and 31 other natural and synthetic steroids and related metabolites (estrogens, androgens, corticosteroids, progestins) in river water, as well as influents and effluents of municipal wastewater treatment plants (WWTP) using HPLC-MS/MS combined with solid-phase extraction. For the various matrixes considered, the optimized method showed satisfactory performance with recoveries of 70-120% for most of target steroids. The method detection limits (MDLs) ranged from 0.01 to 3ng/L for river water, 0.02 to 10ng/L for WWTP effluents, and 0.1 to 40ng/L for influents with good linearity and reproducibility. The developed method was successfully applied for the analysis of steroids in rivers and WWTP influent and effluents. WWTP influents concentrations of 17OH-Δ5P and PD were 51-256ng/L and up to 400ng/L, respectively, along with androstenedione (concentration range: 38-220ng/L), testosterone (11-26ng/L), estrone (2.3-37ng/L), 17β-estradiol (N.D.-8.7ng/L), 17α-hydroxyprogesterone (N.D.-66ng/L), medroxyprogesterone acetate (N.D.-5.3ng/L), and progesterone (2.0-22ng/L), while only androstenedione (ADD), estrone (E1), and estriol (E3) were detected in effluent with concentrations ranging up to 1.7ng/L, 0.90ng/L and 0.8ng/L, respectively. In river water samples, only ADD and E1 were detected with concentrations up to 1.0ng/L and 0.91ng/L. Our procedure represents the first method for analyzing 17OH-Δ5P and PD in environmental samples along with a large series of steroids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2017.08.114 | DOI Listing |
Heliyon
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala, 147004, India.
Deep eutectic solvents (DESs) have attracted significant attention in recent years due to its environment friendly characteristics and its participation in the multi-heteroatom doping of carbon quantum dots (CQDs). In this work, we present a simple, fast, and environment-friendly microwave synthesis approach for the synthesis of DES-assisted nitrogen and chloride co-doped CQDs (N,Cl-CQDs) using a choline chloride-urea based DES. A biomass-based precursor, i.
View Article and Find Full Text PDFNiger Med J
January 2025
Department of Medical Laboratory Services, Federal Medical Center, Yenagoa, Bayelsa State, Nigeria.
Cholera remains a significant public health challenge in Nigeria, with recurrent outbreaks exacerbated by inadequate water, sanitation, and hygiene (WASH) infrastructure, as well as conflict and displacement. This review examines cholera outbreaks in Nigeria from 2010 to 2024, analyzing epidemiological trends, contributing factors, and public health responses. Seasonal peaks during periods of heavy rainfall and flooding have consistently facilitated transmission, with Northern regions disproportionately affected due to poor infrastructure and ongoing conflicts.
View Article and Find Full Text PDFiScience
January 2025
Technology R&D Center, Huaneng Lancang River Hydropower Inc., Kunming 650000, China.
The construction of dams to intercept natural rivers constitutes the most severe human activity influencing the underlying surface. This study focuses on four cascade reservoirs of the Lancang River and explores their impact on the migration of organic matter in sediments. The research reveals significant spatial variations in total organic carbon (TOC) and total nitrogen concentrations in the sediments of the four reservoirs.
View Article and Find Full Text PDFiScience
January 2025
School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
Surface water in rivers is vital for human society. However, our current understanding of the dynamics and drivers of river flows relies predominantly on stream gauging data, which are limited in spatial coverage and involve significant costs. Remote sensing techniques have emerged as complementary tools for monitoring river discharge, but these satellite-based methods often require complex data processing.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba 277-8564, Japan.
Diadromous fishes exhibit latitudinal clines of ocean dependency at inter- and intra-species levels. A pattern of ocean dependence at high latitudes and river dependence at low latitudes is explained by relative aquatic productivity. Such latitudinal productivity clines may induce geographical variations in life-history diversity within migratory phenotypes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!