Improving methane production and anaerobic digestion stability of food waste by extracting lipids and mixing it with sewage sludge.

Bioresour Technol

Biomass Engineering Center, College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China.

Published: November 2017

Anaerobic digestion (AD) of FW shows instability due to both the presence of high lipids and accumulation of volatile fatty acids. In this study, AD of food waste (FW) was optimized by removing lipids (LRFW) and by co-digestion with sewage sludge (1:1w/w on dry matter). The results obtained showed that lipids extraction increased FW methane yield from 400 to 418mL-gVS under mesophilic conditions (35°C) and from 426 to 531mL-gVS in thermophilic conditions (55°C). Two degradation phases (k and k) described FW and LRFW degradation. In the thermophilic, LRFW-k (0.1591d) was slightly higher than that of FW (k of 0.1543d) and in the second stage FW-k of 0.0552d was higher than that of LRFW (k of 0.0117d). The majority of LRFW was degraded in the first stage. FW and sewage sludge co-digestion reduced VFA accumulation, preventing media acidification and improving process stability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2017.08.087DOI Listing

Publication Analysis

Top Keywords

sewage sludge
12
anaerobic digestion
8
food waste
8
improving methane
4
methane production
4
production anaerobic
4
digestion stability
4
stability food
4
waste extracting
4
lipids
4

Similar Publications

Isolation, characterization, and genome sequencing analysis of a novel phage HBW-1 of Salmonella.

Microb Pathog

January 2025

Laboratory of Molecular Microbiology and Food Safety, Zhejiang University College of Animal Sciences, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Sanya 572025, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China. Electronic address:

Salmonella presents a significant threat to the health of animals and humans, especially with the rise of strains resistant to multiple drugs. This highlights the necessity for creating sustainable and efficient practical approaches to managing salmonellosis. The most recent and safest approach to combat antimicrobial resistance-associated infections is lytic bacteriophages.

View Article and Find Full Text PDF

Comprehensive evaluation of antibiotic pollution in a typical tributary of the Yellow River, China: Source-specific partitioning and fate analysis.

J Hazard Mater

January 2025

Shanxi Key Laboratory of Sorghum Genetic and Germplasm Innovation, Sorghum Research Institute, Shanxi Agricultural University, Jinzhong 030600, China.

The partitioning and migrating of antibiotic residues pose a considerable pollution to the river environment. However, a source-specific approach for quantifying the fate of antibiotics is lacking. To further elucidate the migration behavior of antibiotics from different pollution sources in aquatic environments, we introduced a source-specific partition coefficient (S-Kp) based on Positive Matrix Factorization (PMF) model to improve the multimedia model.

View Article and Find Full Text PDF

Despite the vast amount of water on Earth, only a small percent is suitable for consumption, and these resources are diminishing. Moreover, water resources are unevenly distributed, leading to significant disparities in access to drinking water between countries and populations. Increasing consumption and the expanding human population necessitate the development of novel wastewater treatment technologies and the use of water treatment byproducts in other areas, such as fertilisers.

View Article and Find Full Text PDF

Poultry litter waste management poses a significant global challenge, attributed to its characteristics (odorous, organic, pathogenic, attracting flies). Conventional approaches to managing poultry litter involve composting, biogas generation, or direct field application. Recently, there has been a surge of interest in a novel technology that involves the bioconversion of organic waste utilizing insects (known as entomoremediation), particularly focusing on black soldier fly larvae (BSFL), and has demonstrated successful transformation of various organic waste materials into insect meal and frass (referred to as organic frasstilizer).

View Article and Find Full Text PDF

Optimization of Compost and Peat Mixture Ratios for Production of Pepper Seedlings.

Int J Mol Sci

January 2025

Department of Molecular and Biometric Techniques, Museum and Institute of Zoology, Polish Academy of Sciences, 00-818 Warsaw, Poland.

Substituting peat moss with compost derived from organic waste in plant nurseries presents a promising solution for reducing environmental impact, improving waste management, and enhancing soil health while promoting sustainable agricultural practices. However, selecting the appropriate proportions of both materials is crucial for each plant species. This study investigates the effects of different ratios of compost and peat mixtures on the growth and development of pepper seedlings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!