A new method to enhance nutrient removal from low carbon-wastewater was developed. The method consists of a two-sludge system (i.e., an anaerobic-anoxic-oxic reactor coupled to a nitrifying reactor (N-SBR)) and a nitrifying-sludge treatment unit using free nitrous acid (FNA). Initially, 65.1±2.9% in total nitrogen removal and 69.6±3.4% in phosphate removal were obtained without nitrite accumulation. When 1/16 of the nitrifying sludge was daily treated with FNA at 1.1mgN/L for 24h, ∼28.5% of nitrite was accumulated in the N-SBR, and total nitrogen and phosphate removal increased to 72.4±3.2% and 76.7±2.9%, respectively. About 67.8% of nitrite was accumulated at 1.9mgN/L FNA, resulting in 82.9±3.8% in total nitrogen removal and 87.9±3.5% in phosphate removal. Fluorescence in-situ hybridization analysis showed that FNA treatment reduced the abundance of nitrite oxidizing bacteria (NOB), especially that of Nitrospira sp.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2017.08.045 | DOI Listing |
J Obes Metab Syndr
January 2025
Department of Nephrology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
Background: Whether there is a causal relationship between childhood obesity and increased risk of chronic kidney disease (CKD) remains controversial. This study sought to explore how body size in childhood and adulthood independently affects CKD risk in later life using a Mendelian randomization (MR) approach.
Methods: Univariate and multivariate MR was used to estimate total and independent effects of body size exposures.
Water Res
January 2025
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:
Both mechanical models and machine learning-based models are widely utilized for real-time dynamic control; however, their implementation in the water sector often incurs significant data and computational costs. To address these challenges, this study introduces an innovative feature extraction method designed to enhance the cost-effectiveness of dynamic control in wastewater treatment plants. The proposed method extracts dynamic features from time-series data of key substrate variables to construct a data-driven model and develop real-time control strategies.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
January 2025
School of Physical and Applied Sciences, Goa University, Taleigao Plateau, Goa 403206, India. Electronic address:
Analyzing manure nutrients such as total ammonium nitrogen (NH), dry matter (DM), calcium oxide (CaO), total nitrogen (-N), phosphorus pentoxide (PO), magnesium oxide (MgO), and potassium oxide (KO) helps in fulfilling crop nutritional needs while improving the profitability and a lower risk of pollutants. This study used two Near Infra Red (NIR) spectral datasets of fresh and dried manure. The freshly prepared NHCl, CaO, Ca(OH), PO, MgO, and KO samples were used for spectral signature peak identification and calibration.
View Article and Find Full Text PDFEnviron Res
January 2025
State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China; School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Hong Kong Kowloon, 999077, China. Electronic address:
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical found in high levels in wastewater worldwide. Aerobic denitrification is a promising alternative to conventional nitrogen removal processes. However, the effects of BPA on this novel nitrogen removal process have rarely been reported.
View Article and Find Full Text PDFEnviron Res
January 2025
Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China. Electronic address:
Considering the unsatisfied nitrogen (N) and phosphorus (P) treatment performance of mariculture wastewater caused by low carbon/nitrogen (C/N), a novel iron-carbon (Fe-C) micro-electrolysis coupled to heterotrophic nitrification aerobic denitrification (HNAD) process was proposed to enhance the N and P elimination. Results revealed that total nitrogen (TN) removal and total phosphorus (TP) removal efficiencies in Fe-C filter with HNAD (R-Fe) increased by 76.1% and 113.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!