Colorimetric detection of glucose based on ficin with peroxidase-like activity.

Spectrochim Acta A Mol Biomol Spectrosc

Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China. Electronic address:

Published: January 2018

In this work, we developed a colorimetric biosensing system for glucose detection by coupling the peroxidase-like of ficin and the glucose oxidase (GOx). GOx can catalyze the oxidation of glucose to produce HO, then, ficin catalyzes the oxidation of peroxidase substrate 3,3',5,5'-tetramethylbenzidine (TMB) by HO to produce a blue color reaction. The present sensing system showed a linear response toward glucose detection over range of 2.0-100μM with a detection limit of 0.5μM. This system is simple, low cost, highly sensitive and selective for glucose detection, and was also applied to measuring glucose in human serum. Furthermore, in order to expand the application of ficin in biological sensing, we immobilized ficin onto the SiO@FeO NPs, which exhibited the merits of recycling as well as allowing the repeated detection of glucose. Thus it may provide great potential applications in biomedicine, biotechnology and environmental chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2017.08.056DOI Listing

Publication Analysis

Top Keywords

glucose detection
12
glucose
8
detection glucose
8
ficin
5
detection
5
colorimetric detection
4
glucose based
4
based ficin
4
ficin peroxidase-like
4
peroxidase-like activity
4

Similar Publications

Purpose: Metabolic syndrome (MetS) is a cluster of risk factors that increase the risk of cardiometabolic diseases. The prevalence of MetS and individual components across pregnancy has not been reviewed in the literature. This research was conducted to identify the prevalence of MetS and its components among pregnant women.

View Article and Find Full Text PDF

Primary brain tumors that were the most severe and aggressive were called glioblastoma multiforme (GBM). Cancers are caused in part by aberrant expression of circular RNA. Often referred to as competitive endogenous RNA (ceRNA), circRNA molecules act as "miRNA sponges" in cells by decreasing the inhibitory impact of miRNA on their target genes and hence raising the expression levels of those genes.

View Article and Find Full Text PDF

Comparative transcriptome and metabolome analysis of sweet potato ( (L.) Lam.) tuber development.

Front Plant Sci

January 2025

Institute of Food Crops, Hainan Academy of Agricultural Sciences/Hainan Key Laboratory of Crop Genetics and Breeding, Haikou, China.

Introduction: Sweet potato is an important food, feed and industrial raw material, and its tubers are rich in starch, carotenoids and anthocyanins.

Methods: To elucidate the gene expression regulation and metabolic characteristics during the development of sweet potato tubers, transcriptomic and metabolomic analyses were performed on the tubers of three different sweet potato varieties at three developmental stages (70, 100, and 130 days (d)).

Results: RNA-seq analysis revealed that 16,303 differentially expressed genes (DEGs) were divided into 12 clusters according to their expression patterns, and the pathways of each cluster were annotated.

View Article and Find Full Text PDF

Background: Postprandial glucose concentration 1-h (1 h-PG) after an oral glucose tolerance test (OGTT) has similar or superior performance to 2 h-PG in predicting type-2 diabetes mellitus (T2DM) in several populations, and is simpler to obtain in clinical practice. However, studies in Asians are scarce. We investigated the utility of elevated baseline 1 h-PG in predicting T2DM incidence within three years, and its relationship with β-cell function in 1250 non-diabetic Asian participants.

View Article and Find Full Text PDF

Wearable sensors are increasingly being used as biosensors for health monitoring. Current wearable devices are large, heavy, invasive, skin irritants, or not continuous. Miniaturization was chosen to address these issues, using a femtosecond laser-conversion technique to fabricate miniaturized laser-induced graphene (LIG) sensor arrays on and encapsulated within a polyimide substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!