Sepsis mouse models revealed thymus atrophy, characterised by decreased thymus weight and loss of thymocytes due to apoptosis. Mice suffered from lymphopenia, a lack of T cells in the periphery, which attenuates their ability to fight against recurring and secondary infections during sepsis progression. Key players in thymus atrophy are IL-6, which is directly involved in thymus involution, and the sphingosine-1-phosphate - sphingosine-1-phosphate receptor 1 signaling, influencing thymocytes emigration. In healthy individuals a sphingosine-1-phosphate (S1P) gradient from lymphoid organs to the circulatory system serves as signal for mature T cell egress. In the present study we investigated, whether inhibition of S1P generation improves thymus involution. In sepsis, induced by cecal ligation and puncture (CLP), S1P in the thymus increased, while it decreased in serum, thus disrupting the naturally occurring S1P gradient. As a potential source of S1P we identified increased numbers of apoptotic cells in the thymic cortex of septic mice. Pharmacological inhibition of the S1P generating sphingosine kinases, by 4- [[4-(4-Chlorophenyl)-2-thiazolyl]amino]phenol (SK I-II), administered directly following CLP, prevented thymus atrophy. This was reflected by lymphocytosis, diminished apoptosis, decreased IL-6 expression, and an unaltered thymus weight. In addition SK I-II-treatment preserved the S1P balance and prevented S1P-dependent internalization of the sphingosine-1-phosphate receptor 1. Our data suggest that inhibition of sphingosine kinase and thus, S1P generation during sepsis restores thymic T cell egress, which might improve septic outcome.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molimm.2017.08.011 | DOI Listing |
J Clin Med
January 2025
Division of Thoracic Surgery, Policlinico Umberto I, Sapienza University of Rome, 00165 Rome, Italy.
multilocular thymic cysts are uncommon acquired cysts in the anterior mediastinum caused by incomplete thymic involution. They may be associated with autoimmune diseases, such as rheumatoid arthritis and systemic sclerosis. a 61-year-old man with a history of rheumatoid arthritis for 8 years was referred to our unit because of a multiloculated mass in the anterior mediastinum with a high F fluorodeoxyglucose uptake at PET-CT scan.
View Article and Find Full Text PDFMol Oncol
January 2025
Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens, Greece.
Rejuvenation of elementary immune system components has emerged as a promising strategy to deal with increased susceptibility to infections, cancers, autoimmune disorders, and low efficacy to vaccines, frequently accompanying aging. In this context, the thymus has gained significant attention. A recent study by Santamaria et al.
View Article and Find Full Text PDFJ Leukoc Biol
January 2025
Department of Biochemistry and Microbiology, Faculty of Science, University of Victoria, Victoria BC, Canada.
The thymus is a primary lymphoid organ where major types of T lymphocytes undergo essential developmental processes. Eosinophils are among the cell types present in microenvironments within the thymus, and perhaps surprisingly, the role of thymic eosinophils, especially during homeostatic conditions, remains unclear. Major physiological events impact thymic organization and function throughout life: including age-related involution, pregnancy, and exposure to chemotherapy or radiation.
View Article and Find Full Text PDFVaccines (Basel)
November 2024
Department of Biological Sciences, Kean University, Union, NJ 07083, USA.
Immunosenescence, a systematic reduction in the immune system connected with age, profoundly affects the health and well-being of elderly individuals. This review outlines the hallmark features of immunosenescence, including thymic involution, inflammaging, cellular metabolic adaptations, and hematopoietic changes, and their impact on immune cells such as macrophages, neutrophils, T cells, dendritic cells, B cells, and natural killer (NK) cells. Thymic involution impairs the immune system's capacity to react to novel antigens by reducing thymopoiesis and shifting toward memory T cells.
View Article and Find Full Text PDFNat Rev Immunol
January 2025
Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Despite its importance for generating and maintaining a healthy and broad T cell repertoire, the thymus is exquisitely sensitive to acute damage. Marked thymic involution occurs in response to stimuli as diverse as infection, stress, pregnancy, malnutrition, drug use and cytoreductive chemotherapy. However, the thymus also has a remarkable capacity for repair, although this regenerative capacity declines with age.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!