Cadmium is a well-known metallotoxin widespread in the environment and easily reaching cellular targets in lower and higher organisms, including humans. The form(s) of that metal ion through which it interacts with biomolecular targets in a cellular milieu are critical in cell survival. Poised to investigate the structure-specific activity of Cd(II) in a cellular environment and delve into the associated biotoxic processes, binary and ternary systems of that metal ion in the presence of the physiological α-hydroxycarboxylic acid glycolic acid and aromatic (N,N')-binders 2,2'-bipyridine (2,2'-bipy) and 4,4'-bipyridine (4,4'-bipy) were examined synthetically in aqueous media and a pH-specific fashion. The arising new materials [Cd(CHO)] (1), [Cd(CHO)(CHN)(NO)]·nHO (2), and {[Cd(CHO)(CHN)(HO)](NO)}·2nHO (3) project coordination polymers, which were physicochemically characterized through elemental analysis, FT-IR, NMR, luminescence and X-ray crystallography. The distinct spectroscopic features of 1-3, with luminescence exemplifying distinct behavior (2,3), further corroborated by crystallographic analysis, lend credence to a structure-specific selection of species employed in ensuing in vitro biological studies. The emerging results in two different cell lines (3T3-L1, Saos-2) reveal a concentration-dependent, structure-specific and cell line-specific toxicity profile of Cd(II), reflecting its coordination composition and formulation, rendering it soluble and bioavailable (1,2). Mechanistic information riding on caspase-dependent investigation unravels that metal ion's specific behavior compromising cell survival and integrity. Employment of ethylenediamine tetraacetic acid (EDTA) a) shows efficient sequestration of Cd(II) away from its toxic reactivity denoting the strength of interactions involved, and b) lends credence to further development of appropriately configured organic binders, selectively providing molecular protection from Cd(II) toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2017.07.028 | DOI Listing |
Sci Rep
January 2025
School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.
MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.
View Article and Find Full Text PDFSci Rep
January 2025
Hydrobiology Lab, National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.
View Article and Find Full Text PDFNat Commun
January 2025
Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
The mycobacterial ABC transporter IrtAB features an ABC exporter fold, yet it imports iron-charged siderophores called mycobactins. Here, we present extensive cryo-EM analyses and DEER measurements, revealing that IrtAB alternates between an inward-facing and an outward-occluded conformation, but does not sample an outward-facing conformation. When IrtAB is locked in its outward-occluded conformation in nanodiscs, mycobactin is bound in the middle of the lipid bilayer at a membrane-facing crevice opening at the heterodimeric interface.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Graduate School of Science and Technology, Kumamoto University.
Near-infrared wavelength-selective soft actuators have attracted much attention for applications in microsystems in bioliving. It is desirable for the photothermal conversion materials in the actuators to be downsized to the molecular scale. However, in conventional actuator materials using copolymer gels composed of thermosensitive and photothermal conversion molecule-coordinated monomers, the strong cross-linking of molecules in the networks impairs the actuator deformation.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, Kazan, Russia.
The aim of the present study was to obtain new metal complexes of citrus pectin with cobalt ions based on potassium polygalacturonate and to prepare a new pharmacological composition (PC) PGKCo: PGNaCo (1:1) with antitumor activity based on potassium cobalt polygalacturonate (PGKCo) and sodium cobalt polygalacturonate (PGNaCo). The study of the effect of PGKCo, PGNaCo and PC on the cell viability of tumor cell lines of different genesis in vitro showed that the obtained compounds are soluble in water and exhibit selective cytotoxic activity against the tumor cell lines of human lung carcinoma A549, breast adenocarcinoma MCF-7 and cervical carcinoma M-HeLa, with no significant toxic effect on normal human cells. The possible mechanism of action of the investigated PC on M-HeLa cancer cells was investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!