AI Article Synopsis

Article Abstract

Background: Bacterial vaginosis (BV) is the leading dysbiosis of the vaginal microbiome. The pathways leading towards the development of BV are not well understood. Gardnerella vaginalis is frequently associated with BV. G. vaginalis produces the cholesterol-dependent cytolysin (CDC), vaginolysin, which can lyse a variety of human cells and is thought to play a role in pathogenesis. Because membrane cholesterol is required for vaginolysin to function, and because HMG-CoA reductase inhibitors (statins) affect not only serum levels of cholesterol but membrane levels as well, we hypothesized that statins might affect the vaginal microbiome.

Methods: To investigate the relationship between use of the statins and the vaginal microbiome, we analyzed 16S rRNA gene taxonomic surveys performed on vaginal samples from 133 women who participated in the Vaginal Human Microbiome Project and who were taking statins at the time of sampling, 152 women who reported high cholesterol levels but were not taking statins, and 316 women who did not report high cholesterol. To examine the effect of statins on the cytolytic effect of vaginolysin, the cholesterol-dependent cytolysin (CDC) produced by Gardnerella vaginalis, we assessed the effect of simvastatin pretreatment of VK2E6/E7 vaginal epithelial cells on vaginolysin-mediated cytotoxicity.

Results: The mean proportion of G. vaginalis among women taking statins was significantly lower relative to women not using statins. Women using statins had higher mean proportions of Lactobacillus crispatus relative to women with normal cholesterol levels, and higher levels of Lactobacillus jensenii relative to women with high cholesterol but not taking statins. In vitro, vaginal epithelial cells pretreated with simvastatin were relatively resistant to vaginolysin and this effect was inhibited by cholesterol.

Conclusions: In this cross-sectional study, statin use was associated with reduced proportions of G. vaginalis and greater proportions of beneficial lactobacilli within the vaginal microbiome. The negative association between statin use and G. vaginalis may be related to inhibition of vaginolysin function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5573284PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0183765PLOS

Publication Analysis

Top Keywords

vaginal microbiome
16
gardnerella vaginalis
12
high cholesterol
12
women statins
12
relative women
12
statins
10
vaginal
9
association statin
8
cholesterol-dependent cytolysin
8
cytolysin cdc
8

Similar Publications

Unlabelled: Infertility, both primary and secondary, is strongly influenced by microbiological factors, with the vaginal microbiota playing a key role in reproductive health.

Objective: The aim of this study was to characterize the vaginal microbiota of 136 Mexican women diagnosed with infertility-primary (n = 58) and secondary (n = 78)-by evaluating the presence of pathogenic bacterial species and their associations with infertility conditions.

Methods: Samples were obtained through cervical swabs, and microorganism identification was performed using qPCR techniques.

View Article and Find Full Text PDF

Many infants consume both human milk and infant formula (mixed-fed); however, few studies have investigated how mixed feeding affects the gut microbiome composition and metabolic profiles compared to exclusive breastfeeding or formula feeding. Herein, how delivery mode and early nutrition affect the microbiome and metabolome of 6-week-old infants in the STRONG Kids2 cohort was investigated. Fecal samples were collected from exclusively breastfed (BF; n = 25), formula-fed (FF; n = 25) or mixed-fed (MF; n = 25) participants.

View Article and Find Full Text PDF

Vulvovaginal candidiasis (VVC), a condition predominantly caused by , affects millions of women worldwide, prompting the need for alternative treatments due to the side effects and increasing resistance associated with conventional imidazole antifungals. This study investigated VAGINNE, a novel fermentation broth derived from species, as a potential VVC treatment. Using a BALB/c mouse model of infection, we evaluated VAGINNE's effects on vaginal microbiome composition, inflammatory markers, and tissue integrity.

View Article and Find Full Text PDF

An Overview of Early-Life Gut Microbiota Modulation Strategies.

Ann Nutr Metab

January 2025

Department of Paediatrics, Medical University of Warsaw, Warsaw, Poland.

Background: The gut microbiota, or microbiome, is essential for human health. Early-life factors such as delivery mode, diet, and antibiotic use shape its composition, impacting both short- and long-term health outcomes. Dysbiosis, or alterations in the gut microbiota, is linked to conditions such as allergies, asthma, obesity, diabetes, inflammatory bowel disease, and necrotizing enterocolitis in preterm infants.

View Article and Find Full Text PDF

Lactic acid in the vaginal milieu modulates the -host interaction.

Virulence

December 2025

Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, T he Netherlands.

Vulvovaginal candidiasis (VVC) is one of the most common infections caused by . VVC is characterized by an inadequate hyperinflammatory response and clinical symptoms associated with colonization of the vaginal mucosa. Compared to other host niches in which can cause infection, the vaginal environment is extremely rich in lactic acid that is produced by the vaginal microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!