The investigation of heteromultivalent interactions of complex glycoligands and proteins is critical for understanding important biological processes and developing carbohydrate-based pharmaceutics. Synthetic glycomimetics, derived by mimicking complex glycoligands on a variety of scaffolds, have become important tools for studying the role of carbohydrates in chemistry and biology. In this paper, we report on a new synthetic strategy for the preparation of monodisperse, sequence-defined glycooligomers or so-called precision glycomacromolecules based on solid phase oligomer synthesis and the Staudinger ligation. This strategy employs a solid-supported synthetic approach using a novel carboxy-functionalized building block which bears a functional handle required for Staudinger ligation on solid support. Furthermore, we combined Staudinger ligation and copper catalyzed azide alkyne cycloaddition (CuAAC) reactions to synthesize heteromultivalent glycooligomers on solid support for the first time, demonstrating the utility of this approach for the synthesis of heterofunctional glycomacromolecules.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.joc.7b01398DOI Listing

Publication Analysis

Top Keywords

staudinger ligation
16
solid support
12
complex glycoligands
8
orthogonal preparation
4
preparation sequence-defined
4
sequence-defined monodisperse
4
monodisperse heteromultivalent
4
heteromultivalent glycomacromolecules
4
solid
4
glycomacromolecules solid
4

Similar Publications

Water-Compatible Staudinger-Diels-Alder Ligation.

J Org Chem

January 2025

Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.

The development of bioorthogonal reactions is expected to propel further advances in chemical biology. In this study, we demonstrate Staudinger-Diels-Alder (SDA) ligation as a candidate for a new bioorthogonal reaction. This reaction ligates two molecules via strong C-C bonds at room temperature.

View Article and Find Full Text PDF

The trifluoromethyl (-CF) group represents a highly prevalent functionality in pharmaceuticals. Over the past few decades, significant advances have been made in the development of synthetic methods for trifluoromethylation. In contrast, there are currently no metalloenzymes known to catalyze the formation of C(sp)-CF bonds.

View Article and Find Full Text PDF

Innovative Peptide Bioconjugation Chemistry with Radionuclides: Beyond Classical Click Chemistry.

Pharmaceuticals (Basel)

September 2024

Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada.

: The incorporation of radionuclides into peptides and larger biomolecules requires efficient and sometimes biorthogonal reaction conditions, to which click chemistry provides a convenient approach. : Traditionally, click-based radiolabeling techniques have focused on classical click chemistry, such as copper(I)-catalyzed alkyne-azide [3+2] cycloaddition (CuAAC), strain-promoted azide-alkyne [3+2] cycloaddition (SPAAC), traceless Staudinger ligation, and inverse electron demand Diels-Alder (IEDDA). : However, newly emerging click-based radiolabeling techniques, including tyrosine-click, sulfo-click, sulfur(VI) fluoride exchange (SuFEx), thiol-ene click, azo coupling, hydrazone formations, oxime formations, and RIKEN click offer valuable alternatives to classical click chemistry.

View Article and Find Full Text PDF

Total synthesis, stereochemical assignment, and biological evaluation of opantimycin A and analogues thereof.

Org Biomol Chem

November 2024

Department of Biology, Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.

Opantimycin A, a rare antimycin-class antibiotic without the macrolide core, was isolated from sp. RK88-1355 in 2017. In this study, we explored the total synthesis and stereochemical assignment of opantimycin A.

View Article and Find Full Text PDF

The germylone dimNHCGe (dimNHC=diimino N-heterocyclic carbene) reacts with azides N R (R=SiMe or p-tolyl) to furnish the first examples of germanium π-complexes, i. e. guanidine-ligated compounds (dimNHI-SiMe )Ge (NHI=N-heterocyclic imine, R=SiMe ) and (dimNHI-Tol)Ge (R=p-tolyl).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!