Marine natural product peptides with therapeutic potential: Chemistry, biosynthesis, and pharmacology.

Biochim Biophys Acta Gen Subj

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy and Public Health Sciences, Medical University of South Carolina, Charleston, SC, United States. Electronic address:

Published: January 2018

The oceans are a uniquely rich source of bioactive metabolites, of which sponges have been shown to be among the most prolific producers of diverse bioactive secondary metabolites with valuable therapeutic potential. Much attention has been focused on marine bioactive peptides due to their novel chemistry and diverse biological properties. As summarized in this review, marine peptides are known to exhibit various biological activities such as antiviral, anti-proliferative, antioxidant, anti-coagulant, anti-hypertensive, anti-cancer, antidiabetic, antiobesity, and calcium-binding activities. This review focuses on the chemistry and biology of peptides isolated from sponges, bacteria, cyanobacteria, fungi, ascidians, and other marine sources. The role of marine invertebrate microbiomes in natural products biosynthesis is discussed in this review along with the biosynthesis of modified peptides from different marine sources. The status of peptides in various phases of clinical trials is presented, as well as the development of modified peptides including optimization of PK and bioavailability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5918664PMC
http://dx.doi.org/10.1016/j.bbagen.2017.08.014DOI Listing

Publication Analysis

Top Keywords

therapeutic potential
8
marine sources
8
modified peptides
8
peptides
7
marine
6
marine natural
4
natural product
4
product peptides
4
peptides therapeutic
4
potential chemistry
4

Similar Publications

The Ataxia-telangiectasia mutated (ATM) is the most important gene for repairing the DNA in Myelodysplastic Neoplasm.

DNA Repair (Amst)

January 2025

Cancer Cytogenomic Laboratory, Center for Research and Drug Development (NPDM), Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program in Medical Science, Federal University of Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Pathology, Federal University of Ceara, Fortaleza, Ceara, Fortaleza, Ceara, Brazil; Post-Graduate Program of Translational Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil.

Myelodysplastic Neoplasm (MDS) is a cancer associated with aging, often leading to acute myeloid leukemia (AML). One of its hallmarks is hypermethylation, particularly in genes responsible for DNA repair. This study aimed to evaluate the methylation and mutation status of DNA repair genes (single-strand - XPA, XPC, XPG, CSA, CSB and double-strand - ATM, BRCA1, BRCA2, LIG4, RAD51) in MDS across three patient cohorts (Cohort A-56, Cohort B-100, Cohort C-76), using methods like pyrosequencing, real-time PCR, immunohistochemistry, and mutation screening.

View Article and Find Full Text PDF

Purpose: To develop and validate an MRI-based model for predicting postoperative early (≤2 years) recurrence-free survival (RFS) in patients receiving upfront surgical resection (SR) for beyond Milan hepatocellular carcinoma (HCC) and to assess the model's performance in separate patients receiving neoadjuvant therapy for similar-stage tumors.

Method: This single-center retrospective study included consecutive patients with resectable BCLC A/B beyond Milan HCC undergoing upfront SR or neoadjuvant therapy. All images were independently evaluated by three blinded radiologists.

View Article and Find Full Text PDF

Introduction: Sarcomas are a rare and diverse group of mesenchymal-origin solid tumors, constituting only 1% of adult malignancies and classified into soft tissue and bone sarcomas. For localized disease, surgery and radiotherapy remain the cornerstone treatments. However, systemic options for advanced stages are limited, with an overall survival of approximately 20 months.

View Article and Find Full Text PDF

Background: Heart failure (HF) is a chronic, progressive condition where the heart cannot pump enough blood to meet the body's needs. In addition to the daily challenges that HF poses, acute exacerbations can lead to costly hospitalizations and increased mortality. High health care costs and the burden of HF have led to the emerging application of new technologies to support people living with HF to stay well while living in the community.

View Article and Find Full Text PDF

Background: Mental illness is one of the top causes of preventable pregnancy-related deaths in the United States. There are many barriers that interfere with the ability of perinatal individuals to access traditional mental health care. Digital health interventions, including app-based programs, have the potential to increase access to useful tools for these individuals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!