The DNA Damage Checkpoint Eliminates Mouse Oocytes with Chromosome Synapsis Failure.

Mol Cell

Cornell University, Departments of Biomedical Sciences and Molecular Biology and Genetics, Ithaca, NY 14850, USA. Electronic address:

Published: September 2017

Pairing and synapsis of homologous chromosomes during meiosis is crucial for producing genetically normal gametes and is dependent upon repair of SPO11-induced double-strand breaks (DSBs) by homologous recombination. To prevent transmission of genetic defects, diverse organisms have evolved mechanisms to eliminate meiocytes containing unrepaired DSBs or unsynapsed chromosomes. Here we show that the CHK2 (CHEK2)-dependent DNA damage checkpoint culls not only recombination-defective mouse oocytes but also SPO11-deficient oocytes that are severely defective in homolog synapsis. The checkpoint is triggered in oocytes that accumulate a threshold level of spontaneous DSBs (∼10) in late prophase I, the repair of which is inhibited by the presence of HORMAD1/2 on unsynapsed chromosome axes. Furthermore, Hormad2 deletion rescued the fertility of oocytes containing a synapsis-proficient, DSB repair-defective mutation in a gene (Trip13) required for removal of HORMADs from synapsed chromosomes, suggesting that many meiotic DSBs are normally repaired by intersister recombination in mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5621520PMC
http://dx.doi.org/10.1016/j.molcel.2017.07.027DOI Listing

Publication Analysis

Top Keywords

dna damage
8
damage checkpoint
8
mouse oocytes
8
oocytes
5
checkpoint eliminates
4
eliminates mouse
4
oocytes chromosome
4
chromosome synapsis
4
synapsis failure
4
failure pairing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!