Background: The use of scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) was investigated to understand the wear mechanisms from a metal-on-polyethylene bearing couple. Morphological features of femoral head acetabular liner, and isolated particles resulting from hip wear testing were evaluated. EDS was proposed to investigate the polymeric nature of the particles isolated from the wear testing.
Methods: In this work, 28-mm conventional ultra-high-molecular-weight polyethylene acetabular liners paired with metallic heads were tested in a hip wear simulator over 2 million cycles. SEM-EDS was employed to investigate wear mechanisms on hip implant components and associated wear debris.
Results: SEM showed worn surfaces for both hip components, and a significant volume of ultra-high-molecular-weight polyethylene wear particles resulting from hip wear testing. Particles were classified into 3 groups, which were then correlated to wear mechanisms. Group I had particles with smooth surfaces, group II consisted of particles with rough surfaces, and group III comprised aggregate-like particles. Group I EDS revealed that particles from groups I and II had a high C/O ratio raising a concern about the particle source. On the other hand, particles from group III had a low C/O ratio, supporting the hypothesis that they resulted from the wear of acetabular liner. Most of particles identified in group III were in the biologically active size range (0.3 to 20 μm).
Conclusion: The use of optical and electron microscopy enabled the morphological characterization of worn surfaces and wear debris, while EDS was essential to elucidate the chemical composition of isolated debris.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arth.2017.07.039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!