Photodynamic inactivation of multiresistant bacteria (KPC) using zinc(II)phthalocyanines.

Bioorg Med Chem Lett

INFIQC (CONICET), Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria s/n, Córdoba (5000), Córdoba, Argentina. Electronic address:

Published: September 2017

AI Article Synopsis

  • The increase in global antibiotic resistance has led to the exploration of alternative antimicrobial therapies like photodynamic inactivation.
  • The study evaluated the effectiveness of three cationic Zinc phthalocyanines against bacteria, specifically targeting Escherichia coli and Klebsiella pneumoniae Carbapenemase (KPC)-producing strains.
  • Results showed that cationic phthalocyanines effectively inactivated these bacteria when combined with white light irradiation, with the most effective compound being ZnTM2,3PyPz, achieving around 99.995% reduction in bacterial viability.

Article Abstract

The worldwide increase in antibiotic resistance has led to search of alternatives anti-microbial therapies such as photodynamic inactivation. The aim of this paper was to evaluate the photodynamic activity in vitro of a neutral and two cationic Zn phthalocyanines. Their photokilling activity was tested on Escherichia coli ATCC 25922 and Klebsiella pneumoniae Carbapenemase (KPC)-producing. After treating bacteria with phthalocyanines, the cultures were irradiated with white light. As a result, the bacteria were inactivated in presence of cationic phthalocyanines. The photoinactivation was dependent of the irradiation time and phthalocyanine concentration. The most effective photosensitizer on KPC-producing was Zinc(II)tetramethyltetrapyridino[2,3-b:2',3'-g:2″,3″-l:2‴,3‴-q]porphyrazinium methylsulfate (ZnTM2,3PyPz). After irradiation using the water soluble ZnTM2,3PyPz (3μM) the viability of KPC (30min of irradiation) and E. coli (10min of irradiation) decreased ≈99.995%.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2017.08.028DOI Listing

Publication Analysis

Top Keywords

photodynamic inactivation
8
cationic phthalocyanines
8
inactivation multiresistant
4
multiresistant bacteria
4
bacteria kpc
4
kpc zinciiphthalocyanines
4
zinciiphthalocyanines worldwide
4
worldwide increase
4
increase antibiotic
4
antibiotic resistance
4

Similar Publications

Photodynamic bactericidal nanomaterials in food packaging: From principle to application.

J Food Sci

January 2025

Shandong Peanut Research Institute, Key Laboratory of Peanut Biology and Breeding, Ministry of Agriculture and Rural Affairs, Qingdao, PR China.

Compared to traditional preservatives, photodynamic inactivation (PDI) offers a promising bactericidal approach due to its nontoxic nature and low propensity for microbial resistance. In this paper, we initially investigate the principles and antibacterial mechanisms underlying PDI. We then review factors influencing PDI's germicidal efficacy in food preservation.

View Article and Find Full Text PDF

Insecticidal and Bactericidal Activities of Vahl and Molecular Docking Analysis of Insect Acetylcholinesterase.

Turk J Pharm Sci

January 2025

University of Tlemcen, Faculty of Science, Department of Chemistry, Laboratory of Natural and Bioactive Substances, Tlemcen, Algeria.

Objectives: This study focused on the phytochemical, insecticidal, and bactericidal activities of Vahl, as well as molecular docking analysis of an acetylcholinesterase (AChE) inhibitor as a promising natural insecticide.

Materials And Methods: The leaves of were successively extracted with n-hexane, acetone, and methanol. Silica gel column chromatography of the methanol extract yielded compound 1.

View Article and Find Full Text PDF

Multifunctional porphyrinic metal-organic framework-based nanoplatform regulating reactive oxygen species achieves efficient imaging-guided cascaded nanocatalytic therapy.

J Colloid Interface Sci

January 2025

Department of Chemistry, Kay Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Beijing Key Laboratory for Analytical Methods and Instrumentation, Tsinghua University, 100084 Beijing, China. Electronic address:

The integration of reactive oxygen species (ROS) related photodynamic therapy (PDT) with the strategy of reshaping the tumor microenvironment (TME) has emerged as a potential approach for nanodiagnostic and therapeutic interventions. However, the therapeutic efficacy based on ROS treatments may be hindered by intracellular antioxidants such as glutathione (GSH) and tumor hypoxia. To address these challenges, a nanoplatform based on GSH-responsive multifunctional porphyrinic metal-organic framework (PCN-224@Au@MnO@HA, PAMH) was proposed.

View Article and Find Full Text PDF

Can α-Mangostin and Photodynamic Therapy Support Ciprofloxacin in the Inactivation of Uropathogenic and Strains?

Int J Mol Sci

December 2024

Department of Biology and Medical Parasitology, Faculty of Medicine, Wrocław Medical University, Mikulicza-Radeckiego 9, 50-345 Wroclaw, Poland.

Multidrug-resistant bacteria represent a significant challenge in the treatment of bacterial infections, often leading to therapeutic failures. This issue underlines the need to develop strategies that improve the efficacy of conventional antibiotic therapies. In this study, we aimed to assess whether a plant-derived compound, α-mangostin, and photodynamic therapy (PDT) could enhance the antibacterial activity of ciprofloxacin against uropathogenic strains of and .

View Article and Find Full Text PDF

Multicationic ruthenium phthalocyanines as photosensitizers for photodynamic inactivation of multiresistant microbes.

Eur J Med Chem

December 2024

Departamento de Química Orgánica, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain; Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain. Electronic address:

Four photosensitizers PS1a-PS4a consisting in multicationic ruthenium(II) phthalocyanines (RuPcs) have been evaluated in photodynamic inactivation (PDI) of multiresistant microorganisms. The RuPcs, bearing from 4 to 12 terminal ammonium salts, have been designed to target the microorganisms cytoplasmic cell membrane and display high singlet oxygen quantum yields. In addition, PS3a and PS4a were conceived to exhibit multi-target localization by endowing them with amphiphilic character, using two different structural approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!