Cis- and trans-acting lncRNAs in pluripotency and reprogramming.

Curr Opin Genet Dev

Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China. Electronic address:

Published: October 2017

Pervasive transcription in mammalian genomes produces thousands of long noncoding RNA (lncRNA) transcripts. Although they have been implicated in diverse biological processes, the functional relevance of most lncRNAs remains unknown. Recent studies reveal the prevalence of lncRNA-mediated cis regulation on nearby transcription. In this review, we summarize cis- and trans-acting lncRNAs involved in stem cell pluripotency and reprogramming, highlighting the role of regulatory lncRNAs in providing an additional layer of complexity to the regulation of genes that govern cell fate during development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.gde.2017.07.009DOI Listing

Publication Analysis

Top Keywords

cis- trans-acting
8
trans-acting lncrnas
8
pluripotency reprogramming
8
lncrnas
4
lncrnas pluripotency
4
reprogramming pervasive
4
pervasive transcription
4
transcription mammalian
4
mammalian genomes
4
genomes produces
4

Similar Publications

Intraspecific gene regulation in cis- and trans.

Evolution

January 2025

Museum of Vertebrate Zoology and Department of Integrative Biology, University of California, Berkeley, Berkeley, California, United States of America.

Changes in gene expression underlie much of evolution and occur via either cis-acting mutations, which lie near the affected gene and act in a context specific manner, or trans-acting mutations, which may be far from the affected gene and act through diffusible molecules such as transcription factors. A commonly held view is that most expression variation within species is controlled in trans- while expression differences between species are largely controlled in cis-. Here, we summarize recent intraspecific gene regulation studies and find, contrary to this widely held view, that many studies in diverse taxa have revealed a large role for cis-acting mutations underlying expression variation within species.

View Article and Find Full Text PDF

Circular RNA Formation and Degradation Are Not Directed by Universal Pathways.

Int J Mol Sci

January 2025

Department of Rare Diseases, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland.

Circular RNAs (circRNAs) are a class of unique transcripts characterized by a covalently closed loop structure, which differentiates them from conventional linear RNAs. The formation of circRNAs occurs co-transcriptionally and post-transcriptionally through a distinct type of splicing known as back-splicing, which involves the formation of a head-to-tail splice junction between a 5' splice donor and an upstream 3' splice acceptor. This process, along with exon skipping, intron retention, cryptic splice site utilization, and lariat-driven intron processing, results in the generation of three main types of circRNAs (exonic, intronic, and exonic-intronic) and their isoforms.

View Article and Find Full Text PDF

Alternative silencing states of transposable elements in Arabidopsis associated with H3K27me3.

Genome Biol

January 2025

Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Centre National de La Recherche Scientifique (CNRS), Commissariat À L'EnergieAtomique (CEA), Gif-Sur-Yvette, 91190, France.

Background: The DNA/H3K9 methylation and Polycomb-group proteins (PcG)-H3K27me3 silencing pathways have long been considered mutually exclusive and specific to transposable elements (TEs) and genes, respectively in mammals, plants, and fungi. However, H3K27me3 can be recruited to many TEs in the absence of DNA/H3K9 methylation machinery and sometimes also co-occur with DNA methylation.

Results: In this study, we show that TEs can also be solely targeted and silenced by H3K27me3 in wild-type Arabidopsis plants.

View Article and Find Full Text PDF

Enzymatic ester bond formation strategies in fungal macrolide skeletons.

Nat Prod Rep

January 2025

College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.

Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides.

View Article and Find Full Text PDF

High temperature (HT) stress causes male sterility, leading to reduced upland cotton yield. Previously, we identified a key gene, Casein Kinase I (GhCKI), that negatively regulates male fertility in upland cotton under HT. However, conventional genetic manipulations of GhCKI would result in male sterility, hindering its utilization in breeding programs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!