Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Episodic memory was initially believed to be unique to humans. However, studies demonstrate that nonhuman species discriminate items based on the triad what, where and when. Here we addressed the role of the dorsal hippocampal subfield CA1 in an integrative what-where-when task in Wistar rats. We performed bilateral inactivation of dorsal CA1 with the GABA agonist muscimol previously to the task. As expected, sham-operated animals recollected an integrative memory for objects (what), their places (where) and temporal order (when). However, the inactivation of CA1 impaired the performance of the three components of episodic-like memory. In addition, total time of objects exploration and distance traveled were not different between groups, indicating that rats had similar levels of motivation, thus, alterations in exploration does not account for impaired locomotor performance. Altogether, our data provides evidence that CA1 plays an important role in episodic-like memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nlm.2017.08.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!