AI Article Synopsis

  • Lebrikizumab is a monoclonal antibody targeting interleukin-13, studied for treating moderate-to-severe asthma; the research aimed to understand its pharmacokinetics (how the body processes the drug) and its effects on asthma symptoms.
  • The study analyzed pooled data from 11 clinical trials involving over 2,100 participants, examining various doses and their impact on asthma-related measures like exacerbation rates and lung function.
  • Key findings highlighted that body weight significantly influenced the drug's effectiveness, with higher doses providing better responses for lung function but unclear results on reducing asthma attacks, indicating that optimal dosing is crucial for treatment success.

Article Abstract

Lebrikizumab is a humanized monoclonal antibody that binds to interleukin-13 and has been evaluated as a treatment for moderate-to-severe asthma. Objectives of this work were to characterize lebrikizumab pharmacokinetics (PK), identify influential covariates, and graphically explore exposure-response relationships in moderate-to-severe asthmatics. Pooled PK data from 11 studies were used in the population PK model development. Full covariate modeling was used to evaluate the impact of pre-specified covariates. Response data (exacerbation rate, forced expiratory volume in 1 s [FEV], and fractional exhaled nitric oxide [FeNO]) were obtained from moderate-to-severe asthmatics (n = 2148) who received placebo, lebrikizumab 37.5 mg or 125 mg every 4 weeks (Q4W) in two replicate phase 3 studies. Graphical exposure-response analyses were stratified by numerous covariates, including biomarker subgroups defined by serum periostin level and blood eosinophil count at baseline. Lebrikizumab PK was described by a two-compartment model with first-order absorption. Population typical values were estimated as 0.156 L/day for clearance (CL), 4.10 L for central volume (Vc), and 0.239 day for absorption rate (ka), 85.6% for bioavailability (inter-subject variability: CL, 33.3%; Vc, 36.3%; ka, 40.8%). The estimated mean terminal half-life was 25.7 days. Body weight was the most influential covariate. Generally, the exposure-response analyses of FEV and FeNO showed increased response at higher exposure quartiles, while flat or unclear exposure-response relationships were observed in exacerbation rate. Lebrikizumab PK is as expected for a typical immunoglobulin G4 monoclonal antibody. Results from the exposure-response analyses suggested that, compared to 125 mg Q4W, the 37.5 mg Q4W dose did not achieve the maximum responses for FEV and FeNO, although it appeared to maximize the effect on exacerbation reduction. This suggests that the antibody levels needed to improve these outcomes may not be the same. In addition, the role of IL-13 in airflow obstruction/airway inflammation and asthma exacerbations might be different and targeting multiple pathways may be required to treat this heterogeneous disease and provide clinically meaningful benefits to asthma patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pupt.2017.08.010DOI Listing

Publication Analysis

Top Keywords

exposure-response relationships
12
exposure-response analyses
12
moderate-to-severe asthma
8
monoclonal antibody
8
moderate-to-severe asthmatics
8
exacerbation rate
8
fev feno
8
exposure-response
6
lebrikizumab
6
model-based clinical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!