Patients with diabetes mellitus are prone to develop refractory wounds. They exhibit reduced synthesis and levels of circulating hydrogen sulfide (HS), which is an ephemeral gaseous molecule. Physiologically, HS is an endogenous gasotransmitter with multiple biological functions. An emulsion method is utilized to prepare a microparticle system that comprises phase-change materials with a nearly constant temperature of phase transitions to encapsulate sodium hydrosulfide (NaHS), a highly water-labile HS donor. An emulsion technique that can minimize the loss of water-labile active compounds during emulsification must be developed. The as-prepared microparticles (NaHS@MPs) provide an in situ depot for the sustained release of exogenous HS under physiological conditions. The sustained release of HS promotes several cell behaviors, including epidermal/endothelial cell proliferation and migration, as well as angiogenesis, by extending the activation of cellular ERK1/2 and p38, accelerating the healing of full-thickness wounds in diabetic mice. These experimental results reveal the strong potential of NaHS@MPs for the sustained release of HS for the treatment of diabetic wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biomaterials.2017.08.023DOI Listing

Publication Analysis

Top Keywords

sustained release
12
situ depot
8
phase-change materials
8
diabetic wounds
8
depot comprising
4
comprising phase-change
4
materials sustainably
4
release
4
sustainably release
4
release gasotransmitter
4

Similar Publications

Purpose: To report a case of biopsy-proven sarcoidosis in a patient with panuveitis and a positive interferon-gamma release assay (IGRA) from a non-endemic tuberculosis (TB) country.

Methods: Case report.

Results: A 26-year-old male from the United Arab Emirates (UAE) presented with granulomatous panuveitis characterized by mutton-fat keratic precipitates, anterior chamber and vitreous cells, and retinal vasculitis.

View Article and Find Full Text PDF

Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection.

Adv Mater

January 2025

Department of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.

Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug.

View Article and Find Full Text PDF

Algae- and bacteria-based biodegradation of phthalic acid esters towards the sustainable green solution.

World J Microbiol Biotechnol

January 2025

Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.

Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.

View Article and Find Full Text PDF

Unveiling the Dissociation Mechanism of Diglycine Perchlorate.

Inorg Chem

January 2025

High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, Trombay 400085, India.

Determining the dissociation mechanism of perchlorate materials remains a top priority to address sustainability, handling, processing, and synthesis issues of new and existing high-energy density materials vital to many industrial processes. We determined the dissociation mechanism of diglycine perchlorate (DGPCl) using vibrational spectroscopy, which unveiled the formation of ammonium perchlorate (AP) and carbon at high temperatures. Our studies establish that DGPCl shows multiple phase transitions upon heating.

View Article and Find Full Text PDF

Unveiling the potential of dendrobine: insights into bioproduction, bioactivities, safety, circular economy, and future prospects.

Crit Rev Biotechnol

January 2025

Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.

This comprehensive review aims to explore and consolidate the current knowledge on dendrobine, including its biological activities, molecular mechanisms of action, effects on various physiological processes, potential toxicity, and safety considerations, in order to unlock its full potential in various applications. Dendrobine has diverse biological effects, including anti-inflammatory, antioxidant, neuroprotective, immunomodulatory, and anticancer effects. Dendrobine also exerts neuroprotective effects by boosting neuronal survival, reducing neuroinflammation, and regulating neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!