The use of cell-free systems to produce recombinant proteins has grown rapidly over the past decade. In particular, cell-free protein synthesis (CFPS) systems based on mammalian cells provide alternative methods for the production of many proteins, including those that contain disulfide bonds, glycosylation, and complex structures such as monoclonal antibodies. In the present study, we show robust production of turbo green fluorescent protein (tGFP) and streptokinase in a cell-free system using instrumented mini-bioreactors for highly reproducible protein production. We achieved recombinant protein production (∼600 μg/ml of tGFP and 500 μg/ml streptokinase) in 2.5 hr of expression time, comparable to previously reported yields for cell-free protein expression. Also, we demonstrate the use of two different affinity tags for product capture and compare those to a tag-free self-cleaving intein capture technology. The intein purification method provided a product recovery of 86%, compared with 52% for conventionally tagged proteins, while resulting in a 30% increase in total units of activity of purified recombinant streptokinase compared with conventionally tagged proteins. These promising beneficial features combined with the intein technology makes feasible the development of dose-level production of therapeutic proteins at the point-of-care.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bit.26439DOI Listing

Publication Analysis

Top Keywords

production therapeutic
8
protein expression
8
recombinant streptokinase
8
cell-free protein
8
protein production
8
conventionally tagged
8
tagged proteins
8
protein
6
cell-free
5
proteins
5

Similar Publications

Dysregulated lipid metabolism within the tumor microenvironment (TME) is a critical hallmark of cancer progression, with lipids serving as a major energy source for tumor cells. Beyond their role in cell membrane synthesis, lipids also provide essential substrates for biomolecule production and activate signaling pathways that regulate various cellular processes. Aberrant lipid metabolism impacts not only function but also alters the behavior of immune and stromal cells within the TME.

View Article and Find Full Text PDF

Background: Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina.

View Article and Find Full Text PDF

Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.

Curr Top Med Chem

January 2025

Laboratório de Estudos Avançados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.

Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.

View Article and Find Full Text PDF

CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment.

Curr Pharm Biotechnol

January 2025

Department of Pharmacology, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed to-be University, Shirpur - 425405, India.

The world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells.

View Article and Find Full Text PDF

Dual α-globin-truncated erythropoietin receptor knockin restores hemoglobin production in α-thalassemia-derived erythroid cells.

Cell Rep

January 2025

Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA; Eli & Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA. Electronic address:

The most severe form of α-thalassemia results from loss of all four copies of α-globin. Postnatally, patients face challenges similar to β-thalassemia, including severe anemia and erythrotoxicity due to the imbalance of β-globin and α-globin chains. Despite progress in genome editing treatments for β-thalassemia, there is no analogous curative option for α-thalassemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!