Nucleoid-Associated Proteins: Genome Level Occupancy and Expression Analysis.

Methods Mol Biol

National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, 560065, Karnataka, India.

Published: April 2018

The advent of Chromatin Immunoprecipitation sequencing (ChIP-Seq) has allowed the identification of genomic regions bound by a DNA binding protein in-vivo on a genome-wide scale. The impact of the DNA binding protein on gene expression can be addressed using transcriptome experiments in appropriate genetic settings. Overlaying the above two sources of data enables us to dissect the direct and indirect effects of a DNA binding protein on gene expression. Application of these techniques to Nucleoid Associated Proteins (NAPs) and Global Transcription Factors (GTFs) has underscored the complex relationship between DNA-protein interactions and gene expression change, highlighting the role of combinatorial control. Here, we demonstrate the usage of ChIP-Seq to infer binding properties and transcriptional effects of NAPs such as Fis and HNS, and the GTF CRP in the model organism Escherichia coli K12 MG1655 (E. coli).

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-7098-8_8DOI Listing

Publication Analysis

Top Keywords

dna binding
12
binding protein
12
gene expression
12
protein gene
8
nucleoid-associated proteins
4
proteins genome
4
genome level
4
level occupancy
4
expression
4
occupancy expression
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!