The bio-preservative efficacy of a partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 in an economical medium developed using agro-industry waste was evaluated by direct application in milk and milk-based food products. The addition of ppABP in milk samples stored at 4 ± 2 °C and 28 ± 2 °C resulted in the growth inhibition of pathogens Listeria monocytogenes Scott A, Micrococcus luteus ATCC 9341, and Staphylococcus aureus FRI 722. The shelf life of milk samples with added ppABP increased to 4 days at 28 ± 2 °C, whereas curdling and off-odor were noticed in samples without ppABP. Furthermore, the milk samples with ppABP were sensorily acceptable. Antilisterial effect was also observed in cheese and paneer samples treated with ppABP. These results clearly indicate that the ppABP of B. licheniformis Me1 can be utilized as a bio-preservative to control the growth of spoilage and pathogenic bacteria, thereby reducing the risk of food-borne diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12602-017-9319-1DOI Listing

Publication Analysis

Top Keywords

licheniformis me1
12
milk samples
12
samples ppabp
12
bacillus licheniformis
8
application milk
8
milk milk-based
8
milk-based food
8
food products
8
ppabp milk
8
ppabp
7

Similar Publications

This study assessed the impact of eight unit operations [slow pasteurization, high-temperature short time (HTST) pasteurization, cooking, baking, drying, fermentation, supercritical carbon dioxide (CO), irradiation and extrusion] in different food matrices (milk, orange juice, meatballs, bread, crystallized pineapple, yogurt, orange juice, ground black pepper, snacks, and spaghetti) on the resistance of eight (Bacillus flexus Hk1 Bacillus subtilis Bn1, Bacillus licheniformis Me1, Bacillus mojavensis KJS3, Bacillus subtilis PXN21, Bacillus subtilis PB6, Bacillus coagulans MTCC 5856 and Bacillus coagulans GBI-30, 6086) Bacillus strains with claimed probiotic properties (PB). The number of decimal reductions (γ) caused by the unit operations varied (p < 0.05) amongst the PB.

View Article and Find Full Text PDF

The bio-preservative efficacy of a partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 in an economical medium developed using agro-industry waste was evaluated by direct application in milk and milk-based food products. The addition of ppABP in milk samples stored at 4 ± 2 °C and 28 ± 2 °C resulted in the growth inhibition of pathogens Listeria monocytogenes Scott A, Micrococcus luteus ATCC 9341, and Staphylococcus aureus FRI 722. The shelf life of milk samples with added ppABP increased to 4 days at 28 ± 2 °C, whereas curdling and off-odor were noticed in samples without ppABP.

View Article and Find Full Text PDF

Aims: An attempt was made to evaluate the effectiveness of partially purified antibacterial peptide (ppABP) produced by Bacillus licheniformis Me1 for food preservation by means of active packaging.

Methods And Results: The active packaging films containing ppABP were developed using two different packing materials [low-density polyethylene (LDPE) and cellulose films] by two different methods: soaking and spread coating. The activated films showed antibacterial activity against pathogens.

View Article and Find Full Text PDF

In this study, we evaluated the occurrence of antibacterial peptide (ABP)-producing Bacillus spp. in fermented foods. Among 78 isolated cultures, 25 potential ABP-producing stains were selected and differentiated genotypically and phenotypically.

View Article and Find Full Text PDF

In this study, an in vivo toxicological safety assessment of Bacillus licheniformis Me1, a native isolate from milk, was performed. An acute toxicity study in male albino Wistar rats demonstrated no treatment-related illness or mortality. A 90-day subchronic oral toxicity study using 2 doses (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!