MiRNA-154-5p inhibits cell proliferation and metastasis by targeting PIWIL1 in glioblastoma.

Brain Res

Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300350, China. Electronic address:

Published: December 2017

MicroRNAs (miRNAs) play a critical role in glioblastoma initiation and progression. PIWIL1, a human homolog of the PIWI family, has a critical effect on glioblastoma progression. In present study, we found that the expression of miR-154-5p was significantly lower in glioblastoma. Our results suggested that the overexpression of miR-154-5p suppressed proliferation and metastasis, induced apoptosis, whereas inhibiting the expression of miR-154-5p significantly promoted proliferation and metastasis of glioblastoma. We further proved that miR-154-5p directly integrated with the 3'-UTR of PIWIL1 and reintroduction of PIWIL1 can rescue the phenotype changes induced by miR-154-5p. Taken together, our study reveals that miR-154-5p can counteract the malignant phenotypes of glioblastoma by targeting PIWIL1, which might be beneficial to reveal new therapeutic targets for glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2017.08.014DOI Listing

Publication Analysis

Top Keywords

proliferation metastasis
12
targeting piwil1
8
expression mir-154-5p
8
glioblastoma
7
mir-154-5p
6
piwil1
5
mirna-154-5p inhibits
4
inhibits cell
4
cell proliferation
4
metastasis targeting
4

Similar Publications

Bioactive Products Targeting C-Met As Potential Antitumour Drugs.

Anticancer Agents Med Chem

January 2025

Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

Unlabelled: Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.

Objective: With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours.

View Article and Find Full Text PDF

Gene expression dynamics in fibroblasts during early-stage murine pancreatic carcinogenesis.

iScience

January 2025

Department of Visceral, Vascular and Endocrine Surgery, Martin-Luther-University Halle-Wittenberg, University Medical Center Halle, 06120 Halle (Saale), Germany.

Pancreatic ductal adenocarcinoma (PDAC) is characterized by aggressive growth and metastasis, partly driven by fibroblast-mediated stromal interactions. Using RNA sequencing of fibroblasts from early-stage KPC mouse models, we identified significant upregulation of genes involved in adipogenesis, fatty acid metabolism, and the ROS pathway. ANGPTL4, a key adipogenesis regulator, was highly expressed in fibroblasts and promoted pancreatic cancer cell proliferation and migration through paracrine signaling.

View Article and Find Full Text PDF

Background: Regulator of G protein signaling (RGS) proteins participate in tumor formation and metastasis by acting on the α-subunit of heterotrimeric G proteins. The specific effect of RGS, particularly , on the progression of gastric cancer (GC) is not yet clear.

Aim: To explore the role and underlying mechanisms of action of in GC development.

View Article and Find Full Text PDF

Background: Thyroid cancer is one of the most common endocrine tumors worldwide, especially among women and the metastatic mechanism of papillary thyroid carcinoma remains poorly understood.

Methods: Thyroid cancer tissue samples were obtained for single-cell RNA-sequencing and spatial transcriptomics, aiming to intratumoral and antimetastatic heterogeneity of advanced PTC. The functions of APOE in PTC cell proliferation and invasion were confirmed through in vivo and in vitro assays.

View Article and Find Full Text PDF

Advances in VEGFR Inhibitors: A Comprehensive Review of Novel Anticancer Agents.

Anticancer Agents Med Chem

January 2025

School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab, 144411, India.

Cancer, characterized by aberrant cell growth, presents a formidable health challenge, impacting millions of individuals worldwide each year. Among the myriad mechanisms facilitating tumor progression, Vascular Endothelial Growth Factor receptors (VEGFR) play a pivotal role in driving angiogenesis the process by which tumors develop their own blood supply. This vascularization not only supports tumor nourishment and growth but also facilitates metastasis, enabling cancer to spread to distant sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!