Determination of calcium and zinc in gluconates oral solution and blood samples by liquid cathode glow discharge-atomic emission spectrometry.

Talanta

Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China.

Published: December 2017

A novel flowing liquid cathode glow discharge (LCGD) was developed as an excitation source of the atomic emission spectrometry (AES) for the determination of Ca and Zn in digested calcium and zinc gluconates oral solution and blood samples, in which the glow discharge is produced between the electrolyte (as cathode) overflowing from a quartz capillary and the needle-like Pt anode. The electron temperature and electron density of LCGD were calculated at different discharge voltages. The discharge stability and parameters affecting the LCGD were investigated in detail. In addition, the measured results of real samples using LCGD-AES were verified by ICP-AES. The results showed that the optimized analytical conditions are pH = 1 HNO as supporting electrolyte, 4.5mLmin solution flow rate. The power consumption of LCGD is 43.5-66.0W. The R and the RSD ranged from 630 to 680V are 0.9942-0.9995 and 0.49%-2.43%, respectively. The limits of detections (LODs) for Zn and Ca are 0.014-0.033 and 0.011-0.097mgL, respectively, which are in good agreement with the closed-type electrolyte cathode atmospheric glow discharge (ELCAD). The obtained results of Ca and Zn in real samples by LCGD-AES are basically consistent with the ICP-AES and reference value. The results suggested that LCGD-AES can provide an alternative analytical method for the detection of metal elements in biological and medical samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2017.07.040DOI Listing

Publication Analysis

Top Keywords

glow discharge
12
calcium zinc
8
zinc gluconates
8
gluconates oral
8
oral solution
8
solution blood
8
blood samples
8
liquid cathode
8
cathode glow
8
emission spectrometry
8

Similar Publications

Plasma-Liquid-Induced Synthesis of Scandium-Metalloporphyrin Frameworks for Boosted Sensing and Photosensitization.

Adv Mater

January 2025

Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China.

Inserting metal ions into the porphyrin ring is one of the primary strategies to enhance the properties of porphyrin-based metal-organic frameworks (MOFs). However, the straightforward, rapid, and energy-efficient synthesis of porphyrin-based MOFs with high metallization for the porphyrin ring remains challenging. Herein, a solution anode glow discharge (SAGD) microplasma is presented for the one-step synthesis of scandium-metalloporphyrin frameworks (ScMPFs).

View Article and Find Full Text PDF

Cold atmospheric pressure plasma (CAPP) comprises an ensemble of ionized gas, neutral particles, and/or reactive species. Electricity is frequently used to produce CAPP via a variety of techniques, including plasma jets, corona discharges, dielectric barrier discharges, and glow discharges. The type and flow rates of the carrier gas(es), temperature, pressure, and vacuum can all be altered to control the desired properties of the CAPP.

View Article and Find Full Text PDF

The use of metal oxide catalysts to enhance plasma CO reduction has seen significant recent development towards processes to reduce greenhouse gas emissions and produce renewable chemical feedstocks. While plasma reactors are effective at producing the intended chemical transformations, the conditions can result in catalyst degradation. Atomic layer deposition (ALD) can be used to synthesize complex, hierarchically structured metal oxide plasma catalysts that, while active for plasma CO reduction, are potentially vulnerable to degradation due to their high surface area and nanoscopic thickness.

View Article and Find Full Text PDF

Molten salt electrolysis has been widely used in the production and separation of metals, but it still lacks in situ real-time analysis methods to monitor the electrolysis process. In this work, a microplasma spectroscopic real-time analysis (MIPECA) system is developed based on noncontact direct current (DC) glow discharge. With the MIPECA system, the atomic emission spectroscopy of Li and K could be obtained in situ in LiCl-KCl molten salt, and the impact of different operating conditions on spectral signals was investigated.

View Article and Find Full Text PDF

Heavy metal pollution, particularly from cadmium (Cd) and copper (Cu), poses significant environmental and health risks. To address the need for efficient, portable, and sensitive detection methods, this study introduces an improved atmospheric pressure glow discharge atomic emission spectrometry (APGD-AES) technique for quantifying Cd and Cu in water samples. The APGD-AES method offers key advantages, including low energy consumption (<33 W), high excitation energy, and compact design.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!